精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移$\frac{π}{3}$个单位所得的图象与f(x)的图象向右平移$\frac{π}{6}$个单位所得的图象重合,则ω的最小值为4.

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,终边相同的角的特征,求得ω的最小值.

解答 解:函数f(x)=sin(ωx+φ)(ω>0),把f(x)的图象向左平移$\frac{π}{3}$个单位所得的图象为y=sin[ω(x+$\frac{π}{3}$)+φ]=sin(ωx+$\frac{ωπ}{3}$+φ),
把f(x)的图象向右平移$\frac{π}{6}$个单位所得的图象为y=sin[ω(x-$\frac{π}{6}$)+φ]=sin(ωx-$\frac{ωπ}{6}$+φ),
根据题意可得,y=sin(ωx+$\frac{ωπ}{3}$+φ)和y=sin(ωx-$\frac{ωπ}{6}$+φ)的图象重合,
故 $\frac{ωπ}{3}$+φ=2kπ-$\frac{ωπ}{6}$+φ,求得ω=4k,故ω的最小值为4,
故答案为:4.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,终边相同的角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$与双曲线${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1$的离心率分别为e1和e2,则$\frac{1}{e_1^2}+\frac{1}{e_2^2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个结论:①设$\overrightarrow{a},\overrightarrow{b}$为向量,若$|\overrightarrow{a}•\overrightarrow{b}|=|\overrightarrow{a}||\overrightarrow{b}|$,则$\overrightarrow{a}∥\overrightarrow{b}$恒成立;
②命题“若x-sinx=0,则x=0”的逆命题为“若x≠0,则x-sinx≠0”;
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
其中正确结论的个数是(  )
A.1个B.2个C.3个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过抛物线y2=2px(p>0)的焦点F作斜率为1的直线交抛物线于A,B两点,若|AB|=8,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=cos4x-sin4x,下列结论错误的是(  )
A.f(x)=cos2xB.函数f(x)的图象关于直线x=0对称
C.f(x)的最小正周期为πD.f(x)的值域为[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x2-2ax+a+2,若f(x)在[0,a]上取得最大值3,最小值2,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若角α的终边过点(1,-2),则cos(α+$\frac{π}{2}$)=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.向量$|\overrightarrow a|=8,|\overrightarrow b|=12$,则$|\overrightarrow a+\overrightarrow b|$的最大值和最小值的和是24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=x3(x∈R),当0≤θ≤$\frac{π}{2}$时,f(cos2θ+2msinθ)+f(-2m-2)<0恒成立,则实数m的取值范围是(  )
A.(0,1)B.(-$\frac{1}{2}$,1)C.(-∞,1)D.(-$\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案