精英家教网 > 高中数学 > 题目详情

【题目】随着雾霾日益严重,很多地区都实行了“限行”政策,现从某地区居民中,随机抽取了300名居民了解他们对这一政策的态度,绘成如图所示的2×2列联表:

反对

支持

合计

男性

70

60

女性

50

120

合计


(1)试问有没有99%的把握认为对“限行”政策的态度与性别有关?
(2)用样本估计总体,把频率作为概率,若从该地区所有的居民(人数很多)中随机抽取3人,用ξ表示所选3人中反对的人数,试写出ξ的分布列,并求出ξ的数学期望.
K2= ,其中n=a+b+c+d独立性检验临界表:

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

【答案】
(1)解:作出2×2列联表:

反对

支持

合计

男生

70

60

130

女生

50

120

170

合计

120

180

300

由列联表数据代入公式得 K2= ≈18.326.

因为18.326>10.828,故有99%的把握认为对“限行”政策的态度与性别有关.…


(2)由题知,抽取的300名居民中有120名居民持反对态度,

抽取1名居民持反对态度的概率为 =

那么从所有的居民中抽取1名居民持反对态度的概率是

又因为所取总体数量较多,抽取3名居民可以看出3次独立重复实验,

于是ξ服从二项分布 .显然ξ的取值为0,1,2,3,且P(ξ=k)= ,k=0,1,2,3.

所以得分布列为:

ξ

0

1

2

3

P

数学期望Eξ=3× =


【解析】(1)根据题意作出2*2列联表,由联表数据代入k2公式计算比较即可得出结论。(2)由已知可得出抽取1名居民持反对态度的概率,根据题意抽取3名居民可以看出3次独立重复实验,利用伯努利概率公式代入值就可计算出当ξ的取值为0,1,2,3时的概率,列表即可;再根据数学期望公式即可求出结果。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,设圆的方程为(x+2 2+y2=48,F1是圆心,F2(2 ,0)是圆内一点,E为圆周上任一点,线EF2的垂直平分线EF1的连线交于P点,设动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线l(与x轴不重合)与曲线C交于A、B两点,与x轴交于点M.
(i)是否存在定点M,使得 + 为定值,若存在,求出点M坐标及定值;若不存在,请说明理由;
(ii)在满足(i)的条件下,连接并延长AO交曲线C于点Q,试求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AB1⊥BC,且AA1=AB.

(1)求证:AB∥平面D1DCC1
(2)求证:AB1⊥平面A1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为A,B,C所对边,a+b=4,(2﹣cosA)tan =sinA.
(1)求边长c的值;
(2)若E为AB的中点,求线段EC的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Ω:x2=2py(p>0),过点(0,2p)的直线与抛物线Ω交于A、B两点,AB的中点为M,若点M到直线y=2x的最小距离为 ,则p=(  )
A.
B.1
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的导函数为f'(x),且满足 ,f(1)=e,则x>0时,f(x)(  )
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值又有极小值
D.既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(1+x)﹣ax,
(Ⅰ)当b=1时,求g(x)的最大值;
(Ⅱ)若对x∈[0,+∞),f(x)≤0恒成立,求a的取值范围;
(Ⅲ)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P在曲线y= ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且 ,AD=CD=1.

(1)求证:BD⊥AA1
(2)若E为棱BC的中点,求证:AE∥平面DCC1D1

查看答案和解析>>

同步练习册答案