A. | (0,$\frac{1}{e}$] | B. | (一∞,$\frac{1}{e}$] | C. | (0,$\frac{1}{e}$) | D. | (一∞,$\frac{1}{e}$) |
分析 分别讨论a的取值范围,利用参数分离法,结合导数研究函数的最值即可得到结论.
解答 解:当a=0时,f(x)=-e-x<0,则不存在f(x)≤0的解集恰为[p,q],
当a<0时,f(x)<0,此时函数f(x)单调递增,则不存在f(x)≤0的解集恰为[p,q],
当a>0时,由f(x)≤0得$\frac{a}{x}$≤e-x,
当x>0时,不等式等价为a≤$\frac{x}{{e}^{x}}$,
设g(x)=$\frac{x}{{e}^{x}}$,
则g′(x)=$\frac{1-x}{{e}^{x}}$,
当x>1时,g′(x)<0,
当0<x<1时,g′(x)>0,
即当x=1时,g(x)取得极大值,同时也是最大值g(1)=$\frac{1}{e}$,
∴若存在实数p,q,使得f(x)≥0的解集恰为[p,q],
则必有a<$\frac{1}{e}$,
即0<a<$\frac{1}{e}$,
故选:C.
点评 本题主要考查导数的综合应用,考查分类讨论的数学思想,综合性较强,难度较大.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15° | B. | 30° | C. | 45° | D. | 60° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
x | 0 | 2 | 4 | 6 |
y | a | 3 | 5 | 3a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{11}{3}$ | B. | 5 | C. | -8 | D. | -11 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com