精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\frac{a}{x}-{e^{-x}}(a∈R$且x>0).若存在实数p,q(p<q),使得f(x)≤0的解集恰好为[p,q],则a的取值范围是(  )
A.(0,$\frac{1}{e}$]B.(一∞,$\frac{1}{e}$]C.(0,$\frac{1}{e}$)D.(一∞,$\frac{1}{e}$)

分析 分别讨论a的取值范围,利用参数分离法,结合导数研究函数的最值即可得到结论.

解答 解:当a=0时,f(x)=-e-x<0,则不存在f(x)≤0的解集恰为[p,q],
当a<0时,f(x)<0,此时函数f(x)单调递增,则不存在f(x)≤0的解集恰为[p,q],
当a>0时,由f(x)≤0得$\frac{a}{x}$≤e-x
当x>0时,不等式等价为a≤$\frac{x}{{e}^{x}}$,
设g(x)=$\frac{x}{{e}^{x}}$,
则g′(x)=$\frac{1-x}{{e}^{x}}$,
当x>1时,g′(x)<0,
当0<x<1时,g′(x)>0,
即当x=1时,g(x)取得极大值,同时也是最大值g(1)=$\frac{1}{e}$,
∴若存在实数p,q,使得f(x)≥0的解集恰为[p,q],
则必有a<$\frac{1}{e}$,
即0<a<$\frac{1}{e}$,
故选:C.

点评 本题主要考查导数的综合应用,考查分类讨论的数学思想,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$mx2+1,g(x)=2lnx-(2m+1)x-1(m∈R),且h(x)=f(x)+g(x)
(1)若函数h(x)在(1,f(1))和(3,f(3))处的切线互相平行,求实数m的值;
(2)求h(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2+tx+t,?x∈R,f(x)>0,函数g(x)=3x2-2(t+1)x+t,则“?a,b∈(0,1)使得g(a)=g(b)=0”为真命题的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=-4x.
(Ⅰ)已知点M在抛物线C上,它与焦点的距离等于5,求点M的坐标;
(Ⅱ)直线l过定点P(1,2),斜率为k,当k为何值时,直线l与抛物线:只有一个公共点;两个公共点;没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,O为坐标原点,若|MF|=p,K是抛物线C准线与x轴的交点,则∠MKO=(  )
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{{x}^{2}+ax-lnx}{{e}^{x}}$(其中e是自然对数的底数,a∈R).
( I)若曲线f(x)在x=l处的切线与x轴不平行,求a的值;
(Ⅱ)若函数f(x)在区间(0,1]上是单调函数,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x与y之间的一组数据:
x0246
ya353a
已求得关于y与x的线性回归方程$\stackrel{∧}{y}$=1.2x+0.55,则a的值为2.15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若A=60°,b=8,S△ABC=12$\sqrt{3}$,则a=2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设Sn为等比数列{an}的前n项和,若8a2+a5=0,则$\frac{{S}_{5}}{{S}_{2}}$等于(  )
A.$\frac{11}{3}$B.5C.-8D.-11

查看答案和解析>>

同步练习册答案