【题目】已知直线l过点P(0,﹣4),且倾斜角为 ,圆C的极坐标方程为ρ=4cosθ.
(1)求直线l的参数方程和圆C的直角坐标方程;
(2)若直线l和圆C相交于A、B两点,求|PA||PB|及弦长|AB|的值.
【答案】
(1)解:直线l的参数方程为 (t为参数),即 (t为参数).
圆C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,∴圆C的直角坐标方程为:x2+y2=4x
(2)解:把直线l的参数方程代入圆C的方程,化简得 +16=0,
△>0,∴t1t2=16,t1+t2=6 .
∴|PA||PB|=|t1t2|=16,
弦长|AB|=|t1﹣t2|= = =2
【解析】(1)直线l的参数方程为 (t为参数),化简即可得出.圆C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,利用互化公式即可得出圆C的直角坐标方程.(2)把直线l的参数方程代入圆C的方程,化简得 +16=0,利用根与系数的关系及其:|PA||PB|=|t1t2|,弦长|AB|=|t1﹣t2|= ,即可得出.
科目:高中数学 来源: 题型:
【题目】定义:在平面内,点到曲线上的点的距离的最小值称为点到曲线的距离,在平面直角坐标系中,已知圆: 及点,动点到圆的距离与到点的距离相等,记点的轨迹为曲线.
(1)求曲线的方程;
(2)过原点的直线(不与坐标轴重合)与曲线交于不同的两点,点在曲线上,且,直线与轴交于点,设直线的斜率分别为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:
(1)请根据上表数据在网格纸中绘制散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;
(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取3个点,记落在直线右下方的点的个数为,求的分布列以及期望.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,且椭圆过点,记椭圆的左、右顶点分别为,点是椭圆上异于的点,直线与直线分别交于点.
(1)求椭圆的方程;
(2)过点作椭圆的切线,记,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)为二次函数,且f(x﹣1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com