精英家教网 > 高中数学 > 题目详情

已知直三棱柱ABC-A1B1C1的棱AB=BC=AC=4,AA1=2,如图所示,则异面直线AB1与BC1所成的角是________(结果用反三角函数值表示).

arccos
分析:设所成的角为 θ,求出cosθ= 的值,即可求得θ 的值,从而求得异面直线AB1与BC1所成的角.
解答:由题意可得 =+=+=+=+
=(+ )•( + )=+ ++=4×4cos120°+0+0+4=-4.
所成的角为 θ,则有cosθ===-
∴θ=π-arccos,故异面直线AB1与BC1所成的角是arccos
故答案为 arccos
点评:本题主要考查异面直线所成的角的定义和求法,两个向量夹角公式的应用,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.
(Ⅰ)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1的所有棱长都相等,且D,E,F分别为BC,BB1,AA1的中点.
(I) 求证:平面B1FC∥平面EAD;
(II)求证:BC1⊥平面EAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′两两垂直,E,F,H分别是AC,AB,BC的中点,
(I)证明:EF⊥AH;    
(II)求四面体E-FAH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点.
(Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分别是棱BC.CC1.B1C1的中点.A1Q=3QA, BC=
2
AA1

(Ⅰ)求证:PQ∥平面ANB1
(Ⅱ)求证:平面AMN⊥平面AMB1

查看答案和解析>>

同步练习册答案