【题目】设函数.
(1)若a=0时,求函数的单调递增区间;
(2)若函数在x=1时取极大值,求实数a的取值范围;
(3)设函数的零点个数为m,试求m的最大值.
【答案】(1)单调增区间为(1,)(2)(3)2
【解析】
(1)求导得到函数的单调增区间.
(2)求导,讨论,,或,几种情况,分别计算函数极值得到答案.
(3)考虑,两种情况,求导得到单调区间,计算极值判断零点个数,得到答案.
(1)当a=0时,,所以,由得x=1,
当x(0,1)时,<0;当x(1,)时,>0,
所以函数的单调增区间为(1,).
(2)由题意得,
令(x>0),则,
当≥0即时,>0恒成立,
故在(0,1)上递减,在(1,+)上递增,所以x=1是函数的极小值点,不满足;
当即时,此时>0恒成立,
在(0,1)上递减,在(1,+)上递增,所以x=1是函数的极小值点,不满足;
当即或时,
在(0,1)上递减,在(1,+)上递增,所以x=1是函数的极小值点,不满足;
当时,解得或(舍),
当时,设的两个零点为,,所以=1,不妨设0<<,
又,所以0<<1<,故,
当x(0,)时,<0;当x(,1)时,>0;当x(1,)时,<0;当x(,)时,>0;
∴在(0,)上递减,在(,1)上递增,在(1,)上递减,在(,)上递增;
所以x=1是函数极大值点,满足.
综上所述:.
(3)①由(2)知当时,函数在(0,1)上单调递减,在(1,)上单调递增,故函数至多有两个零点,欲使有两个零点,需,得,
;
,,
故满足函数有2个零点.
②当时,由(2)知在(0,)上递减,在(,1)上递增,在(1,)上递减,在(,)上递增;
而0<<1,所以,
此时函数也至多有两个零点
综上①②所述,函数的零点个数m的最大值为2.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,且直线l与曲线C交于M、N两点.
(1)求直线l的普通方程以及曲线C的直角坐标方程;
(2)若曲线C外一点恰好落在直线l上,且,求m,n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足奇数项成等差,公差为,偶数项成等比,公比为,且数列的前项和为,,.
若,.
①求数列的通项公式;
②若,求正整数的值;
若,,对任意给定的,是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2019年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示:
(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2020年4月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有A,B两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料的使用寿命不同,现对A,B两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
经甲公司测算平均每件新型材料每月可以带来6万元收人入,不考虑除采购成本之外的其他成本,A型号材料每件的采购成本为10万元,B型号材料每件的采购成本为12万元.假设每件新型材料的使用寿命都是整月数,且以频率作为每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的平均值为决策依据,你会选择采购哪款新型材料?
参考数据:,.
参考公式:回归直线方程,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数(M>0,>0,0<<)的最小值是﹣2,最小正周期是2,且图象经过点N(,1).
(1)求的解析式;
(2)在△ABC中,若,,求cosC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求直线的参数方程和圆的标准方程;
(2)设直线与圆交于、两点,若,求直线的倾斜角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医院对治疗支气管肺炎的两种方案,进行比较研究,将志愿者分为两组,分别采用方案和方案进行治疗,统计结果如下:
有效 | 无效 | 合计 | |
使用方案组 | 96 | 120 | |
使用方案组 | 72 | ||
合计 | 32 |
(1)完成上述列联表,并比较两种治疗方案有效的频率;
(2)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆的离心率为,点在椭圆C上.
(1)求椭圆C的标准方程;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,轴,垂足为E,连结QE并延长交C于点G.
①求证:是直角三角形;
②求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com