精英家教网 > 高中数学 > 题目详情
已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz(Rez,Imz),
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上。写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段)。
解:(1)由题意可得
解方程,得

∴点
将点代入圆的方程,等号成立
在圆上;
(2)当,即
解得
∴点
由题意可得
整理后得


线段s为
是线段s上一点(非端点),则实系数方程为

此时,且点在圆C上。
(3)如表:
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
    线段s与线段s1的关系 m、r的取值或表达式 
 s所在直线平行于s1所在直线  
 s所在直线平分线段s1  

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试(上海卷)、数学 题型:044

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz(Rez,Imz).

(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;

(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上.写出线段s的表达式,并说明理由;

(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写下表(表中s1是(1)中圆C1的对应线段).

查看答案和解析>>

科目:高中数学 来源:2010年上海市闸北区高考数学一模试卷(文科)(解析版) 题型:解答题

已知复数z1满足(1+i)z1=3+i,复数z满足
(1)求复数z
(2)设z是关于x的实系数方程x2-px+q=0的一个根,求p、q的值.

查看答案和解析>>

科目:高中数学 来源:2008年上海市春季高考数学试卷(解析版) 题型:解答题

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).

查看答案和解析>>

同步练习册答案