精英家教网 > 高中数学 > 题目详情

函数f(x)=2x3-10x2+37的零点个数是


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
D
分析:利用导数先求出函数的极大值和极小值,然后根据极大值,极小值和0的大小关系,去判断函数的零点个数.
解答:函数的导数为,当x>或x<0时,f'(x)>0,函数单调递增.
时,f'(x)<0,函数单调递减.
所以函数在x=0处取得极大值f(0)=37>0,在x=时,取得极小值<0.
所以函数f(x)=2x3-10x2+37的零点个数是3个.
故选D.
点评:本题主要考查知识点是根的存在性及根的个数判断、函数的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-
1
2
x2+m(m为常数)的图象上A点处的切线与直线x+y+3=0垂直,则点A的横坐标为(  )
A、
1
2
B、-
1
3
C、
1
2
-
1
3
D、1或
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-2x3+5x2-3x+2,则f(-3)=
110
110

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2x3-6x2+1(x∈[-2,3])的单调区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3+mx2+(1-m)x,(x∈R).
(1)当m=1时,解不等式f′(x)>0;
(2)若曲线y=f(x)的所有切线中,切线斜率的最小值为-11,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2x3+3x2-12x+1的极值.

查看答案和解析>>

同步练习册答案