【题目】在平面直角坐标系中,动点到定点的距离与它到直线的距离相等.
(1)求动点的轨迹的方程;
(2)设动直线与曲线相切于点,与直线相交于点.
证明:以为直径的圆恒过轴上某定点.
【答案】(1);(2)
【解析】试题分析:(1)设出动点的坐标为,然后直接利用抛物线的定义求得抛物线方程;(2)设出直线的方程为: (),联立直线方程和抛物线方程化为关于的一元二次方程后由判别式等于得到与的关系,求出的坐标,求出切点坐标,再设出的坐标,然后由向量的数量积为0证得答案,并求得的坐标.
试题解析:(1)解:设动点E的坐标为,
由抛物线定义知,动点E的轨迹是以为焦点, 为准线的抛物线,
所以动点E的轨迹C的方程为.
(2)证明:由,消去得: .
因为直线l与抛物线相切,所以,即.
所以直线l的方程为.
令,得.所以Q.
设切点坐标,则,
解得: , 设,
所以当,即,所以
所以以PQ为直径的圆恒过轴上定点.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M点为圆心的圆及其上一点.
(1)设圆N与y轴相切,与圆M外切,且圆心在直线上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点且,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列的各项均为正数,其前项和为, .
(1)如果,且对于一切正整数,均有,求;
(2)如果对于一切正整数,均有,求;
(3)如果对于一切正整数,均有,证明: 能被8整除.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,的线性回归直线方程为,且,之间的一组相关数据如下表所示,则下列说法错误的为
A.变量,之间呈现正相关关系B.可以预测,当时,
C.D.由表格数据可知,该回归直线必过点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.该公司将最近承揽的件包裹的重量统计如下:
包裹重量(单位: ) | |||||
包裹件数 |
公司对近天,每天揽件数量统计如下表:
包裹件数范围 | |||||
包裹件数 (近似处理) | |||||
天数 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来天内恰有天揽件数在之间的概率;
(2)(i)估计该公司对每件包裹收取的快递费的平均值;
(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员人,每人每天揽件不超过件,工资元.公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月,台风“山竹”在沿海地区登陆,小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集到的数据分成五组:,,,,单位:千元,并作出如下频率分布直方图
经济损失不超过4千元 | 经济损失超过4千元 | 合计 | |
捐款超过 500元 | 60 | ||
捐款不超 过500元 | 10 | ||
合计 |
1台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表格,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4千元有关?
2将上述调查得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样的方法每次抽取一户居民,连抽3次,记被抽取的3户居民中自身经济损失超过4千元的户数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
附:临界值表:
k |
随机变量:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.
该公司将近天,每天揽件数量统计如下:
包裹件数范围 | |||||
包裹件数 (近似处理) | |||||
天数 |
(1)某人打算将, , 三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过元的概率;
(2)该公司从收取的每件快递的费用中抽取元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过件,工资元,目前前台有工作人员人,那么,公司将前台工作人员裁员人对提高公司利润是否更有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,过点的直线的参数方程为(为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线相交于, 两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com