精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{t}{2}{x^2}+kx(t>0,k>0)$在x=a,x=b处分别取得极大值与极小值,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则t的值等于(  )
A.5B.4C.3D.1

分析 求出b>a>0,可得:a,b,-2这三个数可适当排序为-2,a,b或b,a,-2后成等差数列,也可适当排序为a,-2,b或b,-2,a后成等比数列,即可得出.

解答 解:函数$f(x)=\frac{1}{3}{x^3}-\frac{t}{2}{x^2}+kx(t>0,k>0)$,
f′(x)=x2-tx+k,
若f(x)在x=a,x=b处分别取得极大值与极小值,
则a,b是方程f′(x)=0的根,
故a+b=t>0,ab=k>0,a<b,
故b>a>0,可得:a,b,-2这三个数可适当排序为-2,a,b或b,a,-2后成等差数列,
也可适当排序为a,-2,b或b,-2,a后成等比数列,
∴2a=b-2,(-2)2=ab,
联立解得b=4,a=1,
∴a+b=5=t,
故选:A.

点评 题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设数集M=$\{x\left|{m≤x≤m+\frac{7}{10}}\right.\}$,N=$\{x\left|{n-\frac{2}{5}≤x≤n}\right.\}$且集合M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合$A=\{x|\frac{x-1}{x+2}≤0\},B=\{x|y=lg(-{x^2}+4x+5)\}$,则A∩(∁RB)=(  )
A.(-2,-1]B.[-2,-1]C.(-1,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=x2,g(x)=($\frac{1}{2}$)x-m,若对任意x1∈[-1,3],总存x2∈[0,2],在使得f(x1)≥g(x2)成立,则实数m的取值范围是m≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a>π>b>1>c>0,且x=a${\;}^{\frac{1}{π}}}$,y=logπb,z=logcπ,则(  )
A.x>y>zB.x>z>yC.y>x>zD.y>z>x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,首项a1=0,公差d≠0,a1+a2+…+a7=ak,则k=(  )
A.10B.20C.23D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中在区间[-1,+∞)上为增函数的是(  )
A.y=$\sqrt{x+1}$B.y=(x-1)2C.y=|x-2|D.y=-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.△ABC的三边a,b,c所对的角分别为A,B,C.若A:B=1:2,sinC=1,则a:b:c=(  )
A.1:2:1B.1:2:3C.2:$\sqrt{3}$:1D.1:$\sqrt{3}$:2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的内角A,B,C所对的边为a,b,c,已知$a=\sqrt{3}+1,b=\sqrt{3}-1$,C=120°,则c=(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.3D.$2\sqrt{3}$

查看答案和解析>>

同步练习册答案