精英家教网 > 高中数学 > 题目详情
19.调查某医院某段时间内婴儿出生的时间与性别的关系,得到部分数据如表:
晚上白天合计
男婴3155
女婴834
合计325789
你认为婴儿的性别与出生时间有关系的把握为(  )
A.80%B.90%C.95%D.不能确定

分析 根据所给的数据,代入求观测值的公式,得到观测值,把观测值同临界值进行比较得到有90%的把握认为婴儿出生的时间与性别有关系.

解答 解:由题意,2×2列联表为:

晚上白天合计
男婴243155
女婴82634
合计325789
根据所给的数据代入求观测值的公式,得到K2=$\frac{89×(24×26-8×31)^{2}}{32×57×55×34}$≈3.689>2.706,
∴有90%的把握认为婴儿出生的时间与性别有关系.
故选:B.

点评 本题考查独立性检验的应用,本题解题的关键是理解临界值对应的概率的意义,能够看出两个变量之间的关系,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若a>b>0>c,则以下不等式恒成立的是(  )
A.$\frac{1}{a}$+$\frac{1}{b}$>$\frac{1}{ab}$B.$\frac{c}{a-c}$>$\frac{c}{b-c}$C.ac>bcD.a2+b2>c2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.根据下列所给的对应关系,回答问题.
①A=N+,B=Z,f:x→y=3x+1,x∈A,y∈B;
②A=N,B=N+,f:x→y=|x-1|,x∈A,y∈B;
③A={x|x为高一(2)班的同学},B={x|x为身高},f:每个同学对应自己的身高;
④A=R,B=R,f:x→y=$\frac{1}{x+|x|}$,x∈A,x∈B.
上述四个对应关系中,是映射的是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校对新生的上学所需时间进行了统计(单位:分钟),并将所得数据绘制成频率分布直方图,(如图),其中所需时间的范围为[0,100],数据分组[0,20),[20,40),[40,60),[60,80),[80,100]
(1)求直方图中的x的值;
(2)如果上学所需时间不少于1小时的学生可以申请乘校车,请计算400名新生中有多少名学生可以申请乘校车上学.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式$|\frac{2-x}{x}|>\frac{x-2}{x}$的解是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点F(c,0)(c>0)是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,F关于直线y=$\frac{\sqrt{3}}{3}$x的对称点A 也在椭圆上,则该椭圆的离心率是(  )
A.$\sqrt{3}$+2B.$\sqrt{3}$-1C.$\frac{\sqrt{3}-1}{2}$D.-$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等差数列{an}中,an>0,且前10项和S10=30,则a5a6的最大值是(  )
A.3B.6C.9D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=alnx-bx2(x>0).
(1)若函数f(x)在x=1处于直线y=-$\frac{1}{2}$相切,求函数f(x)在[$\frac{1}{e}$,e]上的最大值;
(2)当b=0时,若不等式f(x)≥m+x对所有的a∈[1,$\frac{3}{2}$],x∈[1,e2]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a>0,b>0,则$6\sqrt{ab}+\frac{3}{a}+\frac{3}{b}$的最小值是(  )
A.10B.$12\sqrt{2}$C.12D.20

查看答案和解析>>

同步练习册答案