精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn , 且Sn+2=2an(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log2an , 数列{}的前n项和为Tn , 证明:Tn<1.

【答案】解:(I)由Sn+2=2an
当n=1时,a1+2=2a1 , 解得a1=2;
当n≥2时,Sn﹣1+2=2an﹣1有an=2an﹣2an﹣1 , 即an=2an﹣1
所以数列{an}是以2为首项,2为公比的等比数列,
数列{an}的通项公式为an=2×2n﹣1=2n
(Ⅱ)证明:由(I)得bn=log22n=n,
所以Tn=+++…+
=+++…+
=+++…+
=1﹣<1.
【解析】(I)求得数列的首项,将n换为n﹣1,相减可得an=2an﹣1 , 运用等比数列的通项公式即可得到所求;
(Ⅱ)求得bn=log2an=n,= , 再由数列的求和方法:裂项相消求和,以及不等式的性质,即可得证。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= cos(2x+ )+sin2x
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设函数g(x)对任意x∈R,有g(x+ )=g(x),且当x∈[0, ]时,g(x)= ﹣f(x),求g(x)在区间[﹣π,0]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDPE的底面ABCD是平行四边形,AD=AB=2,=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.
(1)若棱AP的中点为H,证明:HE∥平面ABCD;
(2)求二面角A﹣PB﹣E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,侧棱SD⊥底面ABCD,点E是SC的中点,点F在SB上,且EF⊥SB.
(1)求证:SA∥平面BDE;
(2)求证SB⊥平面DEF;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A﹣{1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=219,则I(a)=129,D(a)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为(  )

A.792
B.693
C.594
D.495

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)=ex , 其中e是白然对数的底数,e=2.71828…
(I)若函数φ(x)=f(x)﹣求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数f(x)的图象上一点A(x0 , f(x0)处的切线,证明:在区间(1,+∞)上存在唯一的x0 , 使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(2,5)和(8,3)是函数y=﹣k|x﹣a|+b与y=k|x﹣c|+d的图象仅有的两个交点,那么a+b+c+d的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误的是( )

A. 旅游总人数逐年增加

B. 2017年旅游总人数超过2015、2016两年的旅游总人数的和

C. 年份数与旅游总人数成正相关

D. 从2014年起旅游总人数增长加快

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上的三点P(5,2)、F1(-6,0)、F2(6,0).

(1)求以F1F2为焦点且过点P的椭圆的标准方程

(2)设点PF1F2关于直线yx的对称点分别为P′、F1′、F2′,求以F1′、F2为焦点且过点P的双曲线的标准方程

查看答案和解析>>

同步练习册答案