精英家教网 > 高中数学 > 题目详情

【题目】下列命题为真命题的个数是( )(其中为无理数)

;②;③.

A.0B.1C.2D.3

【答案】C

【解析】

对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.

由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的;

对于②中,设函数,则,所以函数为单调递增函数,

因为,则

又由,所以,即,所以②不正确;

对于③中,设函数,则

时,,函数单调递增,

时,,函数单调递减,

所以当时,函数取得最大值,最大值为

所以,即,即,所以是正确的.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线Ey22pxp0),焦点F到准线的距离为3,抛物线E上的两个动点Ax1y1)和Bx2y2),其中x1x2x1+x24.线段AB的垂直平分线与x轴交于点 C

1)求抛物线E的方程;

2)求ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出己知线段的黄金分割点,具体方法如下:(l)取线段AB=2,过点B作AB的垂线,并用圆规在垂线上截取BC=AB,连接AC;(2)以C为圆心,BC为半径画弧,交AC于点D;(3)以A为圆心,以AD为半径画弧,交AB于点E.则点E即为线段AB的黄金分割点.若在线段AB上随机取一点F,则使得BE≤AF≤AE的概率约为(  )(参考数据:2.236)

A. 0.236B. 0.382C. 0.472D. 0.618

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区内有两条互相垂直的道路,平面直角坐标系的第一象限有一块空地,其边界是函数的图象,前一段曲线是函数图象的一部分,后一段是一条线段.测得的距离为8米,到的距离为16米,长为20米.

(1)求函数的解析式;

(2)现要在此地建一个社区活动中心,平面图为梯形(其中为两底边),问:梯形的高为多少米时,该社区活动中心的占地面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店经销某商品,为了解该商品的月销量y(单位:千件)与售价x(单位:元/件)之间的关系,收集5组数据进行了初步处理,得到如下数表:

x

5

6

7

8

9

y

8

6

4.5

3.5

3

1)统计学中用相关系数r来衡量两个变量之间线性相关关系的强弱,若,则认为相关性很强;若,则认为相关性一般;若,则认为相关性较弱.请根据上表数据计算yx之间相关系数r,并说明yx之间的线性相关关系的强弱(精确到0.01);

2)求y关于x的线性回归方程;

3)根据(2)中的线性回归方程,应将售价x定为多少,可获取最大的月销售金额?(月销售金额=月销售量×当月售价)

附注:

参考数据:

参考公式:相关系数

线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” 其中R为实数集,Q为有理数集.则关于函数有如下四个命题,正确的为( )

A.函数是偶函数

B.,,恒成立

C.任取一个不为零的有理数T,对任意的恒成立

D.不存在三个点,,,使得为等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:

单价(千元)

销量(百件)

已知.

(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程

(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从个销售数据中任取个子,求“好数据”个数的分布列和数学期望.

(参考公式:线性回归方程中的估计值分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线.点A,抛物线上的点P(x,y),过点B作直线AP的垂线,垂足为Q

(I)求直线AP斜率的取值范围;

(II)求的最大值

查看答案和解析>>

同步练习册答案