精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)请作出该函数在长度为一个周期的闭区间的大致图象;

(2)试判断该函数的奇偶性,并运用函数的奇偶性定义说明理由;

(3)求该函数的单调递增区间.

【答案】(1)见解析;(2)见解析;(3).

【解析】

(1)用五点法作图,作出该函数在长度为一个周期的闭区间的大致图象.(2)利用正弦函数的奇偶性作出判断.(2)利用正弦函数的单调性,求函数单调递增区间.

(1)函数fx)=sin2x+cos2xsin(2x+),

列表:

2x+

0

π

x

fx

0

0

0

作图:

(2)该函数为非奇非偶,

f(﹣x)=sin(﹣2x+),而fx)=sin(2x+),

fx)=﹣sin(2x+),

f(﹣x)≠fx),且fx)≠﹣fx),故fx)为非奇非偶函数.

(3)令2kπ﹣≤2x+≤2kπ+,求得kπ﹣xkπ+

可得它的增区间为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列满足: ,且 ,其前n项和.

(1)求证:为等比数列;

(2)记为数列的前n项和.

(i)当时,求

(ii)当时,是否存在正整数,使得对于任意正整数,都有?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)处的切线方程;

(2)当时,函数有两个极值点,求的取值范围;

(3)若在点处的切线与轴平行,且函数时,其图象上每一点处切线的倾斜角均为锐角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)请指出函数的定义域、周期性和奇偶性;(不必证明)

(2)请以正弦函数的性质为依据,并运用函数的单调性定义证明:在区间上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面,四边形是正方形,

(Ⅰ)证明:平面平面

(Ⅱ)求三棱锥与四棱锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数落在[6,10]内的频数为 ,数据落在(2,10)内的概率约为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为,若数列的各项按如下规律排列:,…,, …,,…有如下运算和结论:①;②数列,…是等比数列;③数列,…的前项和为;④若存在正整数,使,则.其中正确的结论是_____.(将你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,BC=2,点MN分别是边ABCD上的点,且MNBC.若将矩形ABCD沿MN折起使其形成60°的二面角(如图).

(1)求证:平面CND⊥平面AMND

(2)求直线MC与平面AMND所成角的正弦值.

查看答案和解析>>

同步练习册答案