精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点为别为,且过点.

(1)求椭圆的标准方程;

(2)如图,点为椭圆上一动点(非长轴端点),的延长线与椭圆交于点的延长线与椭圆交于点,求面积的最大值.

【答案】(1);(2)

【解析】

1)将点代入椭圆方程解得,即可得椭圆方程;

2)当的斜率不存在时,易得;当的斜率存在时,设的方程为,联立,得:,设,利用韦达定理得,则,点到直线的距离是点到直线的距离的2倍,则,得;进行比较,得出面积的最大值.

(1)根据题意得,将点代入椭圆方程得:

解得:,所以椭圆的方程为.

(2)由(1)得椭圆的

①当的斜率不存在时,易知

②当的斜率存在时,设直线的方程为

联立方程组,消去得:

到直线的距离,因为是线段的中点,所以点到直线的距离为

所以

综上,面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义区间(mn),的长度均为,其中.

1)若关于x的不等式的解集构成的区间的长度为,求实数a的值;

2)求关于x的不等式的解集构成的区间的长度的取值范围;

3)已知关于x的不等式组的解集构成的各区间长度和为5,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx),gx)满足关系gx)=fxfx),其中α是常数.

(1)设fx)=cosx+sinx,求gx)的解析式;

(2)设计一个函数fx)及一个α的值,使得

(3)当fx)=|sinx|+cosx时,存在x1x2R,对任意xRgx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82848486868688888888.B样本数据恰好是A样本数据都加2后所得数据,则AB两样本的下列数字特征对应相同的是

A. 众数 B. 平均数 C. 中位数 D. 标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品销售价格和销售量与销售天数有关,第x的销售价格(元/百斤),第x的销售量(百斤)(a为常数),且第7天销售该商品的销售收入为2009元.

1)求第10天销售该商品的销售收入是多少?

2)这20天中,哪一天的销售收入最大?为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数的定义域为

1)求实数的值,使函数为奇函数;

2)在(1)的条件下,令,求使方程有解的实数的取值范围;

3)在(1)的条件下,不等式对于任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)求曲线的普通方程;

(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核心素养与抽象能力(指标)、推理能力(指标)、建模能力(指标)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据

学生编号

(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;

(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为求随机变量的分布列及其数学期望.

查看答案和解析>>

同步练习册答案