精英家教网 > 高中数学 > 题目详情

【题目】

直线的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(其中).

(1)的直角坐标为(2,2),且点在曲线内,求实数m的取值范围;

(2),当变化时求直线被曲线截得的弦长的取值范围.

【答案】(1);(2)

【解析】

试题

(1)利用题意得到关于实数m的不等式,求解不等式即可求得实数m的取值范围是

(2)由题意结合极坐标方程可得 .

试题解析:

(1)曲线的极坐标方程对应的直角坐标方程为

由点在曲线的内部可得解之得

即实数m的取值范围是.

(2)直线l的极坐标方程为代入曲线的极坐标方程并整理可得

设直线l与曲线的两个交点对应的极径分别为.

则直线l与曲线截得的弦长为

,,

即直线l与曲线截得的弦长的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列图象中,可能是函数的图象的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人2013-2017这五年的年度体检的血压值的折线图如图所示.

(1)根据散点图,直接判断甲、乙这五年年度体检的血压值谁的波动更大,并求波动更大者的方差;

(2)根据乙这五年年度体检血压值的数据,求年度体检血压值关于年份的线性回归方程,并据此估计乙在2018年年度体检的血压值.

(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016520日以来,广东自西北到东南出现了一次明显降雨.为了对某地的降雨情况进行统计,气象部门对当地20~289天内记录了其中100小时的降雨情况,得到每小时降雨情况的频率分布直方图如下:

若根据往年防汛经验,每小时降雨量在时,要保持二级警戒,每小时降雨量在时,要保持一级警戒.

1)若以每组的中点代表该组数据值,求这100小时内每小时的平均降雨量;

2)若从记录的这100小时中按照警戒级别采用分层抽样的方法抽取10小时进行深度分析.再从这10小时中随机抽取3小时,求抽取的这3小时中属于一级警戒时间的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点在椭圆上,且的面积为.

1)求椭圆的方程;

2)过原点作圆的两条切线,切点分别为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019924日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP679.1亿元跃升至90.03万亿元,实际增长174倍;人均GDP119元提高到6.46万元,实际增长70.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.如图是全国2010年至2018GDP总量(万亿元)的折线图.注:年份代码19分别对应年份20102018.

1)由折线图看出,可用线性回归模型拟合与年份代码的关系,请用相关系数加以说明;

2)建立关于的回归方程(系数精确到0.01),并预测2021年全国GDP的总量.

附注:参考数据:.

参考公式:相关系数

回归方程中斜率和截距的最小二乘法估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为

1)求圆的圆心到直线的距离;

2)己知,若直线与圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若在定义域内单调递增,求实数a的取值范围;

2)若有两个不同的极值点,记过点的直线的斜率为k,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示

(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;

(2)甲公司新研制了一款产品,需要采购一批新型材料,现有两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

使用寿命

材料类型

个月

个月

个月

个月

总计

如果你是甲公司的负责人,你会选择采购哪款新型材料?

参考数据:.参考公式:回归直线方程为,其中 .

查看答案和解析>>

同步练习册答案