精英家教网 > 高中数学 > 题目详情
5.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=(  )
A.{0}B.{1}C.{0,1}D.{0,-1}

分析 把A中元素代入B中解析式求出y的值,确定出B,找出两集合的交集即可.

解答 解:把A中x=-1,0,1代入B中得:y=0,1,即B={0,1},
则A∩B={0,1},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设[t]表示不超过实数t的最大整数,例如[3,2]=3,[-2,3]=-3,则在坐标平面xOy上,满足$\frac{[x]^{2}}{4}$+$\frac{[y]^{2}}{9}$=1的点P(x,y)所形成的图形的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(x-2)ex
(I)求f(x)的单调区间;
(II)函数g(x)=ax2-2ax,若对一切x∈(2,+∞)有f(x)≥g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是定义在R上的奇函数;
(1)求a、b的值,判断并证明函数y=f(x)在区间(1,+∞)上的单调性
(2)已知k<0且不等式f(t2-2t+3)+f(k-1)<0对任意的t∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知三棱锥P-ABC的三条侧棱两两互相垂直,且AB=$\sqrt{5}$,BC=$\sqrt{7}$,AC=2,则此三棱锥的外接球的体积为(  )
A.$\frac{8}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.$\frac{16}{3}$πD.$\frac{32}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)设f(x)=ax+b,且$\int_{\;-1}^{\;1}{{{[{f(x)}]}^2}dx}=2$,求f(a)的取值范围.
(2)求函数f(x)=x3-3x过点P(1,-2)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x+2y+2≥0}\\{2x-y+2≤0}\\{x≤0}\end{array}\right.$,则z=3x-y的最大值为(  )
A.1B.-$\frac{16}{5}$C.-2D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2$\sqrt{3}$,离心率e=$\frac{1}{2}$,
(1)求椭圆C的标准方程:
(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=1+$\frac{{a}_{n}}{(n+1)^{2}}$(n∈N*).
(1)证明:an+1≥an+$\frac{{a}_{n}}{(n+1)^{2}}$;
(2)证明:$\frac{2}{n+3}$<$\frac{{a}_{n+1}}{n+1}$<1.

查看答案和解析>>

同步练习册答案