精英家教网 > 高中数学 > 题目详情

设二次函数满足下列条件:①当时,的最小值为,且图像关于直线对称;②当时,恒成立.

(1)求的值;  

(2)求的解析式;

(3)若在区间上恒有,求实数的取值范围.

 

【答案】

(1)(2)(3)

【解析】

试题分析:(1)在②中令,有,故.                  4分

(2)当时,的最小值为且二次函数关于直线对称,

故设此二次函数为.                                    6分

因为,得.                                                   8分

所以.                                                    10分

(3)记

显然 ,在区间上恒有,即,        12分

,得,由的图像只须,                    15分

解得.                                                          16分

考点:本小题主要考查二次函数的图象和性质及恒成立问题.

点评:二次函数是高中学习中比较重要的一类函数,要准确掌握,灵活求解;恒成立问题一般转化为最值问题解决,这是经常考查的题型.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数满足下列条件:

①当时,的最小值为0,且关于直线x=-1对称;

②当x[-1, 1] 时,≤(x-1)2+1恒成立。

的解析式   

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三数学10月单元练习(函数一) 题型:解答题

(本小题满分14分)设二次函数满足下列条件:

①当∈R时,的最小值为0,且f (-1)=f(--1)成立;

②当∈(0,5)时,≤2+1恒成立。

(1)求的值;    

(2)求的解析式;

(3)求最大的实数m(m>1),使得存在实数t,只要当时,就有成立。

 

查看答案和解析>>

科目:高中数学 来源:2010年绥滨一中高二下学期期末考试数学卷 题型:解答题

(本小题满分12分)设二次函数满足下列条件:

①当∈R时,的最小值为0,且f (-1)=f(--1)成立;

②当∈(0,5)时,≤2+1恒成立。

(1)求的值;    

   (2)求的解析式;

(3)求最大的实数m(m>1),使得存在实数t,只要当时,就有成立。

 

查看答案和解析>>

科目:高中数学 来源:2010年安徽省高一第一学期期中考试理科数学卷 题型:解答题

(本小题满分14分)

设二次函数满足下列条件:

①当时,其最小值为0,且成立;

②当时,恒成立.

(1)求的值;

(2)求的解析式;

(3)求最大的实数,使得存在,只要当时,就有成立

 

查看答案和解析>>

同步练习册答案