精英家教网 > 高中数学 > 题目详情
在矩形ABCD中,AB=1,AD=4,E、F分别是AD、BC的中点,以EF为折痕把四边形EFCD折起,当∠CEB=90°时,二面角C-EF-B的平面角的余弦值等于
-
1
4
-
1
4
分析:本题为折叠问题,注意到一些长度和角度的不变性,由题意CF⊥EF,BF⊥EF,所以∠CFB即为二面角C-EF-B的平面角,故只需求出BC的长度,而在△CEB中可求得BC,再由余弦定理求解即可.
解答:解:由已知,得出CF⊥EF,BF⊥EF,所以∠CFB 为二面角C-EF-B的平面角.
当∠CEB=90°时,△CEB为等腰直角三角形,CE=BE=
12+22
=
5
,BC=
10

在△CFB中,根据余弦定理得出cos∠CFB=
CF2+BF2-BC2
2CF•BF
=
4+4-10
2×2×2
=-
1
4

故答案为:-
1
4
点评:本题考查折叠问题、求二面角、解三角形等知识,考查空间想象能力和运算能力,在折叠问题中注意“变”和“不变”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上
(1)求证:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,已知AD=2,AB=a(a>2),E、F、G、H分别是边AD、AB、BC、CD上的点,若AE=AF=CG=CH,问AE取何值时,四边形EFGH的面积最大?并求最大的面积.

查看答案和解析>>

科目:高中数学 来源:设计必修二数学北师版 北师版 题型:044

如图,已知在矩形ABCD中,A(-4,4)、D(5,7),其对角线的交点E在第一象限内且与y轴的距离为一个单位,动点P(x,y)沿矩形一边BC运动,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1-5-5,在矩形ABCD中,过A作对角线BD的垂线AP与BD交于P,过P作BC、CD的垂线PE、PF,分别与BC、CD交于E、F.

1-5-5

求证:AP3=BD·PE·PF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知在矩形ABCD中,||=.设=a, =b, =c,求|a+b+c|.

查看答案和解析>>

同步练习册答案