精英家教网 > 高中数学 > 题目详情
设a,b,c∈R,有下列命题:
①若a>0,则f(x)=ax+b在R上是单调函数;
②若f(x)=ax+b在R上是单调函数,则a>0;
③若b2-4ac<0,则 a3+ab+c≠0;
④若a3+ab+c≠0,则b2-4ac<0.
其中,真命题的序号是______.
对于①,根据一次函数的性质可知,若a>0,则f(x)=ax+b在R上是单调函数是真命题;
对于②,若f(x)=ax+b在R上是单调函数,则a>0或a<0,故是假命题;
对于③,若b2-4ac<0,关于x的方程ax2+bx+c=0没有实根,从而当x=a时有a3+ab+c≠0,故是真命题;
对于④,若a3+ab+c≠0,则b2-4ac<0不一定成立,如取a=0,b=1,c=1时,a3+ab+c=2≠0,但是b2-4ac=1>0.故是假命题.
故答案为:①③
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c∈R+,且a+b+c=1,若M=(
1
a
-1
)(
1
b
- 1
)(
1
c
- 1
),则必有(  )
A、o≤M≤
1
8
B、
1
8
≤M<1
C、1≤M<8
D、M≥8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)设a,b,c∈R,有下列命题:
①若a>0,则f(x)=ax+b在R上是单调函数;
②若f(x)=ax+b在R上是单调函数,则a>0;
③若b2-4ac<0,则 a3+ab+c≠0;
④若a3+ab+c≠0,则b2-4ac<0.
其中,真命题的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设a,b,c∈R,有下列命题:
①若a>0,则f(x)=ax+b在R上是单调函数;
②若f(x)=ax+b在R上是单调函数,则a>0;
③若b2-4ac<0,则 a3+ab+c≠0;
④若a3+ab+c≠0,则b2-4ac<0.
其中,真命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省嘉兴市高考数学二模试卷(理科)(解析版) 题型:填空题

设a,b,c∈R,有下列命题:
①若a>0,则f(x)=ax+b在R上是单调函数;
②若f(x)=ax+b在R上是单调函数,则a>0;
③若b2-4ac<0,则 a3+ab+c≠0;
④若a3+ab+c≠0,则b2-4ac<0.
其中,真命题的序号是   

查看答案和解析>>

同步练习册答案