精英家教网 > 高中数学 > 题目详情
2.已知圆O:x2+y2=5和点A(2,1)则过点A且和圆O相切的直线与两坐标轴围成的三角形的面积等于$\frac{25}{4}$.

分析 判断点A在圆上,用点斜式写出切线方程,求出切线在坐标轴上的截距,从而求出直线与两坐标轴围成的三角形的面积.

解答 解:由题意知,点A在圆上,则A为切点,
∴OA的斜率k=$\frac{1}{2}$,
∴切线斜率为-2,
则切线方程为:y-1=-2(x-2),
即2x+y-5=0,从而求出在两坐标轴上的截距分别是5和$\frac{5}{2}$,
∴所求面积S=$\frac{1}{2}×5×\frac{5}{2}$=$\frac{25}{4}$.
故答案为:$\frac{25}{4}$.

点评 本题考查求圆的切线方程的方法,以及求直线与坐标轴围成的三角形的面积.判断A是切点是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.当x,y满足条件$\left\{\begin{array}{l}{x≥y}\\{y≥0}\\{2x+y-3≥0}\end{array}\right.$时,目标函数z=x+3y的最小值是(  )
A.0B.1.5C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知{an}是等比数列,给出以下四个命题:①{2a3n-1}是等比数列;②{an+an+1}是等比数列;③{anan+1}是等比数列;④{lg|an|}是等比数列,下列命题中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=3cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{3}{2}$(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为等边三角形.将函数f(x)的图象上各点的横坐标变为原来的π倍,将所得图象向右平移$\frac{2π}{3}$个单位,再向上平移1个单位,得到函数y=g(x)的图象
(1)求函数g(x)的解析式;
(2)求h(x)=lg[g(x)-$\frac{5}{2}$]的定义域;
(3)若3sin2$\frac{x}{2}$-$\sqrt{3}$m[g(x)-1]≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,则a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(0,$\frac{2}{3}$)∪(1,+∞)C.(1,+∞)D.(0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列条件能唯一确定一个平面的是(  )
A.空间任意三点B.不共线三点C.共线三点D.两条异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知⊙O1与⊙O1的半径分别为5cm和3cm,圆心距O1O1=7cm,则两圆的位置关系相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{x^2}{10-m}+\frac{y^2}{m-2}=1$,长轴在y轴上,若焦距为8,则m等于(  )
A.4B.8C.14D.38

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如表示采集的商品零售额(万元)与商品流通费率的一组数据:
 商品零售额 9.511.5 13.5 15.5 17.5 19.5 21.5 23.5 25.5 27.5 
 商品流通费率 6.0 4.6 4.0 3.22.8 2.5 2.4 2.3 2.2 2.1 
(1)将商品零售额作为横坐标,商品流通费率作为纵坐标,在平面直角坐标系内作出散点图;
(2)商品零售额与商品流通费率具有线性相关关系吗?如果商品零售额是20万元,那么能否预测此时流通费率是多少呢?(b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$ a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

同步练习册答案