精英家教网 > 高中数学 > 题目详情
(x-2)6的展开式中x2的系数为
 
考点:二项式定理的应用
专题:二项式定理
分析:在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.
解答: 解:(x-2)6的展开式的通项公式为 Tr+1=
C
r
6
•(-2)r•x6-r,令6-r=2,求得r=4,
可得(x-2)6的展开式中x2的系数为
C
4
6
•(-2)4=240,
故答案为:240.
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x2+(p+2)x+1=0,x∈R},且A⊆{x|x≤0},求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过P(3,4),且A(-2,3),B(8,13)到直线l距离相等,则直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=n2+4n+2,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x
x+a
在(-2,+∞)上为增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)(ln5)0+(
9
4
0.5+
(1-
2
)2
-2log42
(2)log21-lg3•log32-lg5.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log2x,x∈[1,8],求函数y=[f(x)]2+f(x2)的最大值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1=
2
2
BC,D,E,F分别是BC,BB1,CC1的中点.
(1)求证A1E∥平面ADF;
(2)(理)求二面角B-AD-F的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角之比为A:B:C=3:2:1,那么对应的三边之比a:b:c等于(  )
A、3:2:1
B、
3
:2:1
C、
3
2
:1
D、2:
3
:1

查看答案和解析>>

同步练习册答案