精英家教网 > 高中数学 > 题目详情
过椭圆
x2
36
+
y2
25
=1
的焦点F1作直线交椭圆与A、B两点,F2是椭圆的另一焦点,则△ABF2的周长是(  )
A、12B、24C、22D、10
分析:由椭圆方程求得a=6,,△ABF2的周长是 ( AF1+AF2 )+(BF1=BF2),由椭圆的定义知,AF1+AF2=2a,BF1+BF2=2a,从而求出△ABF2的周长.
解答:解:由椭圆
x2
36
+
y2
25
=1
可得,a=6,b=5,
△ABF2的周长是 ( AF1+AF2 )+(BF1+BF2)=2a+2a=4a=24,
故选B.
点评:本题考查椭圆的定义、椭圆的标准方程,以及椭圆的简单性质的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①如果椭圆
x2
36
+
y2
9
=1
的一条弦被点A(4,2)平分,那么这条弦所在的直线的斜率为-
1
2

②过点P(0,1)与抛物线y2=x有且只有一个交点的直线共有3条.
③双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦点到渐近线的距离为b.
④已知抛物线y2=2px上两点A(x1,x2),B(x2,y2)且OA⊥OB(O为原点),则y1y2=-p2
其中正确的命题有
①②③
①②③
(请写出你认为正确的命题的序号)

查看答案和解析>>

同步练习册答案