精英家教网 > 高中数学 > 题目详情
设函数y=f(x)满足对一切的x∈R,f(x)≥0,且f(x+1)=
9-f2(x)
,已知当x∈[0,1)时,f(x)=
2x,0≤x≤
1
2
lg(x+31)
1
2
<x<1
,则f(
100
)
=
 
分析:利用函数周期性解题,关键是求出周期.
解答:解:∵f(x+3)═f[(x+2)+1]=
9-f2(x+2)
=
9-9+f2(x+1)
=f(x+1)

∴T=2
∴f(
100
)=f(10)=f(0)=20=1,
故答案为:1.
点评:本题主要考查利用函数周期性化简求值.也可以直接求出f(0)、f(1)、、、f(10)或利用规律得出f(10)=1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安庆模拟)设函数f(x)=cos
x
4
(sin
x
4
+cos
x
4
)-
1
2

(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=数学公式
(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈市武穴市梅川高中高三(上)11月月考数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=
(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省安庆市重点中学高三(下)联考数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=
(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:安庆模拟 题型:解答题

设函数f(x)=cos
x
4
(sin
x
4
+cos
x
4
)-
1
2

(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案