【题目】若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称该函数为“函数”.
(1)判断函数是否为“函数”,并说明理由;
(2)若函数在定义域上是“函数”,求的取值范围;
(3)已知函数在定义域上为“函数”.若存在实数,使得对任意的,不等式都成立,求实数的最大值.
【答案】(1)不是“函数”,理由详见解析;(2);(3).
【解析】
(1)用反例判断函数不是“函数”;
(2)根据函数在定义域 是“函数”,探索得到的关系式,再求得的取值范围;
(3)在(2)的基础上,将不等式,应用分离变量求最值.
解:函数不是“函数”,理由如下:
若是“函数”.取,存在,使得
即,整理得,但是,矛盾,
所以不是“函数”.
(2)在上单调递增,取,则存在,
使得,.
如果,取,则存在,使得,.
因为在上单调递增,所以.
所以
又,所以,上式与之矛盾,
所以假设不成立,所以.即,即,
整理得.
因为,所以,.
又,所以的取值范围是.
.
因为,所以的取值范围是.
(3)函数的对称轴为,且,
当在定义域上为“函数”时,必有.
所以函数在上单调递增,由(2)知,必有,
即,解得.
由,,
对任意的恒成立,知.整理得
令,则在上单调递增,.
因为是存在,使得成立,所以.
综上所述,实数的最大值为.
科目:高中数学 来源: 题型:
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.
(1)求椭圆的方程及离心率的值;
(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点.若,且,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:
①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;
②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;
③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包;
④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包;
⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.
(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);
(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);
(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,抛物线: 与抛物线: 异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.
(1)若直线与抛物线交于点, ,且,求抛物线的方程;
(2)证明: 的面积与四边形的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)当p=1时,若抛物线C上存在关于直线l对称的相异两点P和Q.求线段PQ的中点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com