精英家教网 > 高中数学 > 题目详情
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(极坐标与参数方程选讲选做题)设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的方程为x-3y+2=0,则曲线C上的动点P(x,y)到直线l距离的最大值为
3+
7
10
10
3+
7
10
10

B.(不等式选讲选做题)若存在实数x满足不等式|x-3|+|x-5|<m2-m,则实数m的取值范围为
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

C.(几何证明选讲选做题)如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.已知⊙O的半径为3,PA=2,则PC=
4
4
.OE=
5
9
5
9
分析:A:把曲线C的参数方程化为普通方程,求出圆心到直线的距离,再把此距离加上半径,即得所求.
B:由绝对值得意义可得|x-3|+|x-5|的最小值2,再由题意可得m2-m>2,由此求得实数m的取值范围.
C:由圆的切割线定理求出PC的值,用等面积法求出CE,用勾股定理求得OE的值.
解答:解:A:把曲线C的参数方程化为普通方程为 (x-2)2+(y+1)2=9,表示以C(2,-1)为圆心,半径等于3的圆.
圆心到直线 x-3y+2=0 的距离为
|2+3+2|
10
=
7
10
10
,则曲线C上的动点P(x,y)到直线l距离的最大值为 3+ 
7
10
10

故答案为 3+ 
7
10
10

B:由于|x-3|+|x-5|表示数轴上的x对应点到3和5对应点的距离之和,它的最小值等于2,
而存在实数x满足不等式|x-3|+|x-5|<m2-m,故m2-m应大于|x-3|+|x-5|的最小值2,
即m2-m>2,解得 m<-1,或m>2,
故答案为(-∞,-1)∪(2,+∞).
C:由圆的切割线定理可得PC2=PA•PB=2(2+6)=16,∴PC=4.
由圆的切线性质可得,△POC为直角三角形,设它的面积为S,则S=
1
2
×OC×PC
=
1
2
×CE×PO

1
2
×3×4
=
1
2
×CE×(2+3)
,解得CE=
12
5

再由勾股定理可得OE=
OC2-CE 2
=
9-(
12
5
2
=
9
5

故答案为 4;
9
5
点评:本题主要考查把参数方程化为普通方程的方法,点到直线的距离公式的应用.绝对值不等式的解法,圆的切割线定理以及圆的切线性质应用,等面积法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x+1|≥|x+2|的解集为
 

B.(几何证明选做题)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,
已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为
 

C.(坐标系与参数方程选做题)若直线3x+4y+m=0与圆
x=1+cosθ
y=-2+sinθ
(θ为参数)没有公共点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2,∠BCD=30°,则圆O的面积为

(B)(极坐标系与参数方程选做题)极坐标方程ρ=2sinθ+4cosθ表示的曲线截θ=
π
4
(ρ∈R)
所得的弦长为
3
2
3
2

(C)(不等式选做题)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA=PE,∠ABC=60°,PD=1,PB=9,则EC=
4
4

B. P为曲线C1
x=1+cosθ
y=sinθ
,(θ为参数)上一点,则它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值为
1
1

C.不等式|x2-3x-4|>x+1的解集为
{x|x>5或x<-1或-1<x<3}
{x|x>5或x<-1或-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列二题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
(A)(选修4-4坐标系与参数方程)曲线
x=cosα
y=a+sinα
(α为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.
(B)(选修4-5不等式选讲)若不等式|x+1|+|x-3| ≥a+
4
a
对任意的实数x恒成立,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案