精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{{9}^{x}}{{9}^{x}+3}$.
(1)求f(x)+f(1-x)的值;
(2)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{2014}{2015}$)的值.

分析 (1)利用函数的解析式,直接化简求解即可.
(2)利用(1)的结果,直接求解即可.

解答 解:(1)函数f(x)=$\frac{{9}^{x}}{{9}^{x}+3}$.
f(x)+f(1-x)=$\frac{{9}^{x}}{{9}^{x}+3}$+$\frac{{9}^{1-x}}{{9}^{1-x}+3}$=$\frac{{9}^{x}}{{9}^{x}+3}$$+\frac{{9}^{1-x}•{9}^{x}}{({9}^{1-x}+3)•{9}^{x}}$=$\frac{{9}^{x}}{{9}^{x}+3}$+$\frac{9}{{3•9}^{x}+9}$=$\frac{{9}^{x}+3}{{9}^{x}+3}$=1.
(2)由(1)可得:f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{2014}{2015}$)
=$\frac{1}{2}$[f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{2014}{2015}$)+f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{2014}{2015}$)]
=$\frac{2015}{2}$.

点评 本题考查函数值的求法,有理指数幂的运算法则,以及倒序相加法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知2sinθ-cosθ=1,3cosθ-2sinθ=a,记数a形成的集合为A,若x∈A,y∈A,则以点P(x,y)为顶点的平面图形可以是.
A.正方形B.五边形C.三角形D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=|x3-1|+x3+ax(a∈R)
(1)解关于字母a的不等式[f(-1)]2≤f(2);
(2)a=-12,求f(x)的单调区间
(3)若a<0,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{2x-{x}^{2},x<0}\end{array}\right.$,若f(3-m2)<f(2m),则实数m的取值范围是(  )
A.(-∞,-1)B.(3,+∞)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若{$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$}为空间的一组基底,向量$\overrightarrow{OM}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+m$\overrightarrow{OC}$,$\overrightarrow{AM}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,则m+λ+μ的值是(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如果两平行直线y=2x-b与y=2x+5之间距离为$\sqrt{5}$,那么b=0或-10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设P是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$上的一点,F1、F2是焦点,若∠F1PF2=90°,则△PF1F2的面积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{4}=1$的焦点为F1,F2,过F1的直线与椭圆C交于A,B两点,若△ABF2的周长是12,则椭圆C的离心率是$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x≥0)}\\{2(x<0)}\end{array}\right.$,则f(1-2x)>f(x)的解集是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{3}$,$\frac{1}{2}$)D.(-∞,0)

查看答案和解析>>

同步练习册答案