精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=$\frac{1}{2}$x2-9lnx在区间[a-$\frac{1}{2}$,a+$\frac{1}{2}$]上单调递减,则实数a的取值范围是($\frac{1}{2}$,$\frac{5}{2}$].

分析 首先求出函数的单调递减区间,然后结合数轴分析求出m的范围即可.

解答 解:∵f(x)=$\frac{1}{2}$x2-9lnx,
∴函数f(x)的定义域是(0,+∞),
f′(x)=x-$\frac{9}{x}$,
∵x>0,∴由f′(x)=x-$\frac{9}{x}$<0,得0<x<3.
∵函数f(x)=$\frac{1}{2}$x2-9lnx在区间[a-$\frac{1}{2}$,a+$\frac{1}{2}$]上单调递减,
∴$\left\{\begin{array}{l}{a-\frac{1}{2}>0}\\{a+\frac{1}{2}≤3}\end{array}\right.$,解得$\frac{1}{2}$<a≤$\frac{5}{2}$.
故答案为:($\frac{1}{2}$,$\frac{5}{2}$].

点评 此题是个中档题.考查学生掌握利用导数研究函数的单调性,以及分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若2a+2b=1,ab>0,则$\frac{1}{a}$+$\frac{1}{b}$的最小值是(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+$\frac{2{a}^{3}}{x}$+1.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线y=1平行,求a的值;
(Ⅱ)若0<a<2,求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B-PADE的体积是$\frac{\sqrt{3}}{3}$;
(1)画出面PBE与面ABC的交线,说明理由;
(2)求面PBE与面ABC所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex
(Ⅰ)求函数g(x)=sinx•f(x)在(0,π)上的单调区间;
(Ⅱ)求证:$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题p:?x∈R,使得x2-x+2<0;命题q:?x∈[1,2],使得x2≥1.以下命题为真命题的是(  )
A.¬p∧¬qB.p∨¬qC.¬p∧qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.BD是等腰直角三角形△ABC腰AC上的中线,AM⊥BD于点M,延长AM交BC于点N,AF⊥BC于点F,AF与BD交于点E.
(1)求证;△ABE≌△ACN;
(2)求证:∠ADB=∠CDN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某个长方形的面积为a2-(b+1)2,且它的边长都是整式,则它的周长为(  )
A.2aB.2a2-2b2-4bC.4a或2a2-2b2-4bD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前项和为Sn.若a1=1,an=3Sn-1+4(n≥2).
(1)求数列{an}的通项公式;
(2)令bn=log2$\frac{{a}_{n+2}}{7}$,cn=$\frac{{b}_{n}}{{2}^{n+1}}$,其中n∈N+,记数列{cn}的前项和为Tn.求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

同步练习册答案