精英家教网 > 高中数学 > 题目详情
f(x)=(ax+b)sinx+(cx+d)cosx,若已知f′(x)=xcosx,则f(x)=_________.

解析:∵f′(x)=[(ax+b)sinx]′+[(cx+d)cosx]′

=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)(cosx)′=asinx+(ax+b)cosx+ccosx-(cx+d)sinx

=(a-d-cx)sinx+(ax+b+c)cosx.

为使f′(x)=xcosx,应满足

解方程组得

从而可知,f(x)=xsinx+cosx.

答案:xsinx+cosx

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
a
x
+xlnx
,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的s,t∈[
1
2
,2]
,都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
ax+a-x
2
g(x)=
ax-a-x
2
(其中a>0,且a≠1).
(1)5=2+3请你推测g(5)能否用f(2),f(3),g(2),g(3)来表示;
(2)如果(1)中获得了一个结论,请你推测能否将其推广.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=a
x
-lnx
(a>0):
(1)若f(x)在[1,+∞)上递增,求a的取值范围;  
(2)求f(x)在[1,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=a
x
-lnx
(a>0)
(1)若f(x)在[1,+∞)上递增,求a的取值范围;
(2)若f(x)在[2,4]上的存在单调递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x),x∈D同时满足下列条件:
(1)在D内的单调函数;
(2)存在实数m,n,当定义域为[m,n]时,值域为[m,n].则称此函数为D内可等射函数,设f(x)=
ax+a-3lna
(a>0且a≠1),则当f (x)为可等射函数时,a的取值范围是
(0,1)∪(1,2)
(0,1)∪(1,2)

查看答案和解析>>

同步练习册答案