精英家教网 > 高中数学 > 题目详情

【题目】设抛物线的焦点为,准线为已知点在抛物线上,点上,是边长为4的等边三角形.

(1)求的值;

(2)若直线是过定点的一条直线,且与抛物线交于两点,过的垂

线与抛物线交于两点,求四边形面积的最小值.

【答案】(1)2;(2)48

【解析】分析:(1)根据抛物线定义结合平面几何知识分析可得 ;(2)设出的直线方程并与抛物线方程联立整理成关于的一元二次方程,利用根与系数关系表示出的长,再利用函数知识求解最值.

详解:

(1)由题意知 ,则.设准线轴交于点,则

是边长为4的等边三角形, ,所以

(2)设直线的方程为,设

联立,则

,同理得

则四边形的面积

是关于的增函数

,当且仅当时取得最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校共有10000人,其中男生7500人,女生2500人,为调查该校学生每则平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时).调查部分结果如下列联表:

男生

女生

总计

每周平均体育运动时间不超过4小时

35

每周平均体育运动时间超过4小时

30

总计

200

(1)完成上述每周平均体育运动时间与性别的列联表,并判断是否有把握认为“该校学生的每周平均体育运动时间与性别有关”;

(2)已知在被调查的男生中,有5名数学系的学生,其中有2名学生每周平均体育运动时间超过4小时,现从这5名学生中随机抽取2人,求恰有1人“每周平均体育运动时间超过4小时”的概率.

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点依逆时针次序排列,点的极坐标为.

(1)求点的直角坐标;

(2)设上任意一点,求点到直线距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

①函数fx=2a2x-1-1的图象过定点(-1);

②已知函数fx)是定义在R上的奇函数,当x≥0时,fx=xx+1),若fa=-2则实数a=-12

③若loga1,则a的取值范围是(1);

④若对于任意xRfx=f4-x)成立,则fx)图象关于直线x=2对称;

⑤对于函数fx=lnx,其定义域内任意x1x2都满足f

其中所有正确命题的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)当时,判断曲线与曲线的位置关系;

(2)当曲线上有且只有一点到曲线的距离等于时,求曲线上到曲线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且为偶函数,当时,,若函数恰有一个零点,则实数的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)在复数范围内解方程为虚数单位)

2)设是虚数,是实数,且

i)求的值及的实部的取值范围;

ii)设,求证:为纯虚数;

iii)在(ii)的条件下求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的个数是(

①若直线平面,直线,则;②若直线l和平面内的无数条直线垂直,则直线l与平面必相交;③过平面外一点有且只有一条直线和平面垂直;④过直线外一点有且只有一个平面和直线a垂直

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=-x3x2+(m2-1)x(xR),其中m>0.

(1)m=1求曲线yf(x)在点(1,f(1))处的切线斜率;

(2)求函数的单调区间与极值.

查看答案和解析>>

同步练习册答案