精英家教网 > 高中数学 > 题目详情

如图,△ABC中,AC=BC,AE和CD都垂直于平面ABC,且AE=AB=2,F为BE的中点,DF∥平面ABC,?
(1)求CD的长;?
(2)求证:AF⊥BD;?
(3)求平面ADF与平面ABC所形成的较小的二面角的度数.

(1)解:取AB中点G,连FG、CG,则FG∥AE,
又AE和CD都垂直于平面ABC,∴AE∥CD,
∴FG∥CD,∴F、G、C、D四点共面.
又平面FGCD∩平面ABC=CG,DF∥平面ABC,
∴DF∥CG,∴四边形FGCD是平行四边形,∴
(2)证明:直角三角形ABE中,AE=AB,F是BE的中点,∴AF⊥BE,
又△ABC中,AC=BC,G是AB中点,∴CG⊥AB,又AE垂直于平面ABC,∴AE⊥CG,
又AE∩AB=A,∴CG⊥面ABE.∵DF∥CG,∴DF⊥面ABE,∴AF⊥DF
又∵BE∩DF=F,∴AF⊥面BED,∴AF⊥BD.
(3)解:设面ADF∩面ABC=L,∵DF∥平面ABC,∴DF∥L,
又DF⊥面ABE,∴L⊥面ABE,∴L⊥AF,L⊥AB,
∴∠FAB即为所求二面角的平面角.直角三角形ABE中,易得∠FAB=45°
∴平面ADF与平面ABC所形成的较小的二面角为45°.
分析:(1)取AB中点G,连FG、CG,则FG∥AE,由AE和CD都垂直于平面ABC,知AE∥CD,故FG∥CD,F、G、C、D四点共面.由DF∥平面ABC,DF∥CG,知四边形FGCD是平行四边形,由此能求出CD的长.
(2)在直角三角形ABE中,AE=AB,F是BE的中点,故AF⊥BE,由△ABC中,AC=BC,G是AB中点,知CG⊥AB,由AE垂直于平面ABC,知AE⊥CG,由此能够证明AF⊥BD.
(3)设面ADF∩面ABC=L,由DF∥平面ABC,知DF∥L,由DF⊥面ABE,知L⊥面ABE,故L⊥AF,L⊥AB,所以∠FAB即为所求二面角的平面角.由此能求出平面ADF与平面ABC所形成的较小的二面角的大小.
点评:本题考查求CD的长,求证:AF⊥BD,求平面ADF与平面ABC所形成的较小的二面角的度数.考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在△ABC中,AB⊥AC,
BD
=
5
3
BC
|
AC
|
=2,则
AC
AD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,△ABC中,∠B=90°,AB=
2
,BC=1,D、 E
两点分别在线段AB、AC上,满足
AD
AB
=
AE
AC
=λ,λ∈(0,1)
.现将△ABC沿DE折成直二面角A-DE-B.
(1)求证:当λ=
1
2
时,面ADC⊥面ABE;
(2)当λ∈(0,1)时,直线AD与平面ABE所成角能否等于
π
6
?若能,求出λ的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江大庆实验中学高二上学期开学考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.

(I)求二面角P—BC—A的正切值;

(II)求二面角C—PB—A的正切值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆实验中学高二(上)期初数学试卷(理科)(解析版) 题型:解答题

如图,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

同步练习册答案