精英家教网 > 高中数学 > 题目详情
精英家教网在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).
(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
分析:(Ⅰ)设出三角形的重心,A,B的坐标,利用三角形重心的性质表示出x和y,利用OA⊥OB推断出kOA•kOB=-1求得x1x2+y1y2=-1把A,B代入抛物线求得x1x2的值,进而求得y和x的关系式即G的轨迹方程.
(II)利用两点间的距离公式分别表示出|OA|和|OB|代入三角形面积公式,利用基本不等式和x1x2的值求得三角形面积的最小值.
解答:解:(I)设△AOB的重心为G(x,y),A(x1,y1),B(x2,y2),
x=
x1+x2
3
y=
y1+y2
3
(1)
∵OA⊥OB∴kOA•kOB=-1,即x1x2+y1y2=0,(2)
又点A,B在抛物线上,有y1=x12,y2=x22,代入(2)化简得x1x2=-1
∴Y=
y1+y2
3
=
1
3
(x12+x22)=
1
3
[(x1+x22-2x1x2]=
1
3
×(3x)2+
2
3
=3x2+
2
3

所以重心为G的轨迹方程为y═3x2+
2
3

(II)S△AOB=
1
2
|OA||OB|=
1
2
(
x
2
1
+
y
2
1
)(
x
2
2
+
y
2
2
)
=
1
2
x
2
1
x
2
2
+
x
2
1
y
2
2
+
x
2
2
y
2
1
+
y
2
1
y
2
2

由(I)得S△AOB=
1
2
x
2
1
+
x
2
2
+2
1
2
2|
x
 
1
x
 
2
| +2
=
1
2
×2=1
当且仅当x12=x22即|x1|=|x2|=1时,等号成立.
所以△AOB的面积存在最小值,存在时求得最小值1.
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案