精英家教网 > 高中数学 > 题目详情

已知椭圆中心在坐标原点,焦点在轴上,且经过三点.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点.

①若,求的长;

②证明:直线与直线的交点在直线上.

 

 

【答案】

解:(1)设椭圆方程为           ……1分 

代入椭圆E的方程,得

,解得  ∴椭圆的方程        ……3分

(2)

 

 

 

……5分

①若,则

 又                                   ……6分

=

        =               ……8分

 

 

 

 

 

 

 

因此结论成立.直线与直线的交点住直线上.       ……14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆中心在坐标原点,短轴长为2,一条准线l的方程为x=2.
(1)求椭圆方程;
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在坐标原点O,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),直线l平行OM,且与椭圆交于A、B两个不同的点.
(1)求椭圆方程;
(2)若∠AOB为钝角,求直线l在y轴上的截距m的取值范围;
(3)求证直线MA、MB与x轴围成的三角形总是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在坐标原点,焦点在x轴上,离心率e=
3
2
,若椭圆与直线x+y+1=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在坐标原点,焦点在x轴上,离心率为
2
2
,它的一个顶点为抛物线x2=4y的焦点.
(I)求椭圆方程;
(II)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程;
(III)若斜率为1的直线交椭圆于M、N两点,求△OMN面积的最大值(O为坐标原点).

查看答案和解析>>

同步练习册答案