精英家教网 > 高中数学 > 题目详情
△ABC的三内角A,B,C所对边的长分别为a,b,c,设向量
p
=(sinB,a+c),
q
=(sinC-sinA,b-a).若?λ∈R,使
p
q
,则角C的大小为(  )
A、
π
6
B、
3
C、
π
3
D、
π
2
分析:由于?λ使得
p
q
,可得
p
q
.于是(a+c)(sinC-sinA)-(b-a)sinB=0.利用正弦定理可得:(a+c)(c-a)-(b-a)b=0,再利用余弦定理即可得出.
解答:解:∵?λ使得
p
q
,∴
p
q

∴(a+c)(sinC-sinA)-(b-a)sinB=0.
由正弦定理可得:(a+c)(c-a)-(b-a)b=0,化为c2-a2-b2+ab=0,
由余弦定理可得:cosC=
a2+b2-c2
2ab
=
1
2

∵C∈(0,π),∴C=
π
3

故选:C.
点评:本题考查了向量共线定理、正弦定理和余弦定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC的三内角A,B,C所对的边长分别为a,b,c,若向量
p
=(a+c,b)与
q
=(b-a,c-a)
是共线向量,则角C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且sinAsinC=
34

(Ⅰ)求角B的大小;
(Ⅱ)若x∈[0,π),求函数f(x)=sin(x-B)+sinx的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c分别为△ABC的三内角A,B,C的对边.求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC的三内角A、B、C所对的边分别为a、b、c,边a、b是方程x2-2
3
x+2=0的两根,角A、B满足关系2sin(A+B)-
3
=0,求角C的度数,边c的长度及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
3
)+sin2x
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=
6
,cosB=
1
3
,f(
C
2
)=-
1
4
,求b.

查看答案和解析>>

同步练习册答案