精英家教网 > 高中数学 > 题目详情

【题目】已知集合M={x|x2﹣1≤0},N={x| <2x+1<4,x∈Z},则M∩N=(
A.{﹣1,0}
B.{1}
C.{﹣1,0,1}
D.

【答案】A
【解析】解:集合M={x|x2﹣1≤0}={x|﹣1≤x≤1},

N={x| <2x+1<4,x∈Z}={x|﹣2<x<1,x∈Z}={﹣1,0},

则M∩N={﹣1,0}

故选:A

【考点精析】关于本题考查的集合的交集运算和指、对数不等式的解法,需要了解交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立;指数不等式的解法规律:根据指数函数的性质转化;对数不等式的解法规律:根据对数函数的性质转化才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)

x

f(x)

0

2

0

﹣2

0

(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0, ]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|1<2x﹣1<5},B={y|y=( x , x≥﹣2}.
(1)求(UA)∩B;
(2)若集合C={x|a﹣1<x﹣a<1},且CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(x﹣ )﹣sin(x﹣ ). (Ⅰ)判断函数f(x)的奇偶性,并给出证明;
(Ⅱ)若θ为第一象限角,且f(θ+ )= ,求cos(2θ+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,∠ADC=120°,AA1=AB=1,点O1、O分别是上下底菱形对角线的交点.
(1)求证:A1O∥平面CB1D1
(2)求点O到平面CB1D1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从双曲线 =1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若M为线段FP的中点,O为坐标原点,则|MO|﹣|MT|与b﹣a的大小关系为(
A.|MO|﹣|MT|>b﹣a
B.|MO|﹣|MT|=b﹣a
C.|MP|﹣|MT|<b﹣a
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数a,b,c满足loga3<logb3<logc3,则下列关系中不可能成立的(
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y= (υ>0).
(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:

x

1

2

3

4

5

y

5

6

7

8

10

由资料可知y对x呈线性相关关系,且线性回归方程为 ,请估计使用年限为20年时,维修费用约为(
A.26.2
B.27
C.27.6
D.28.2

查看答案和解析>>

同步练习册答案