精英家教网 > 高中数学 > 题目详情
11.计算下列各式:
(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+$\frac{37}{48}$
(2)(a-2b-3)(-4a-1b)÷(12a-4b-2c)

分析 (1)利用有理数指数幂的性质、运算法则求解.
(2)利用有理数指数幂的性质、运算法则求解.

解答 解:(1)(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+$\frac{37}{48}$
=($\frac{25}{9}$)${\;}^{\frac{1}{2}}$+$\frac{1}{0.{1}^{2}}$+($\frac{64}{27}$)-${\;}^{\frac{2}{3}}$+$\frac{37}{48}$
=$\frac{5}{3}$+100+$\frac{9}{16}$+$\frac{37}{48}$=103.
(2)(a-2b-3)(-4a-1b)÷(12a-4b-2c)
=-$\frac{1}{3}$a-2-1-(-4)b-3+1-(-2)c-1=-$\frac{1}{3}$ac-1=-$\frac{a}{3c}$.

点评 本题考查有理数指数幂化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数y=$\frac{1}{2}{x}^{2}-lnx$的单调减区间是(  )
A.(0,1)B.(0,1)∪(-∞,-1)C.(-∞,1)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=x(x+4).
(1)求x>0时,函数f(x)的解析式;
(2)画出函数f(x)的图象,并写出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某班主任对全班50名学生进行了作业量多少的调查,根据列联表数据计算得到K2=5.059,因为P(K2≥5.024)=0.025,则认为“喜欢玩电脑游戏与认为作业量的多少有关系”的把握大约为(  )
A.2.5%B.95%C.97.5%D.不具有相关性

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等式|x|•(1-2x)>0的解集是(  )
A.{x|x<$\frac{1}{2}$}B.{x|x<0或0<x<$\frac{1}{2}$}C.{x|x>$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(2x+$\frac{π}{3}$),则函数f(x)图象的对称轴为(  )
A.x=$\frac{π}{12}$+kπ(k∈z)B.x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈z)C.x=-$\frac{π}{6}$+kπ(k∈z)D.x=-$\frac{π}{6}$+$\frac{kπ}{2}$(k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知四组函数:①f(x)=1gx2,g(x)=2lgx;②f(x)=logaax,g(x)=${a}^{lo{g}_{a}x}$(a>0,a≠1);③f(x)=logaax(a>0,a≠1),g(x)=$\root{3}{{x}^{3}}$;④f(x)=$\frac{1}{x}$,g(x)=f-1(x).其中表示相同函数的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.“x>1”是“${log_{\frac{1}{2}}}(x+2)<0$”的一个充分不必要条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”选择一个填写)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图示,边长为4的正方形ABCD与正三角形ADP所在平面互相垂直,M、Q分别是PC,AD的中点.
(1)求证:PA∥面BDM
(2)求多面体P-ABCD的体积
(3)试问:在线段AB上是否存在一点N,使面PCN⊥面PQB?若存在,指出N的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案