精英家教网 > 高中数学 > 题目详情
7.已知下列各数列{an}的前n项和Sn的公式,求{an}的通项公式.
(1)Sn=10n-1;
(2)Sn=10n+1.

分析 (1)(2)利用当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1,即可得出.

解答 解:(1)当n=1时,a1=10-1=9;当n≥2时,an=Sn-Sn-1=(10n-1)-(10n-1-1)=9•10n-1
当n=1时,也成立.
∴an=9•10n-1
(2)当n=1时,a1=10+1=11当n≥2时,an=Sn-Sn-1=(10n+1)-(10n-1+1)=9•10n-1
当n=1时,不成立.
∴an=$\left\{\begin{array}{l}{11,n=1}\\{9•1{0}^{n-1},n≥2}\end{array}\right.$.

点评 本题考查了“当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1”方法求数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=-x2+3x+4的定义域为[-2,2],则f(x)的值域为[-6,$\frac{25}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-a|.当a=-2时,解不等式f(x)≥16-|2x-1|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知关于x的方程kx2+(2k-1)x+k+1=0,问k为何值时.
(1)方程两根均正;
(2)方程至少有一根在(3,4)内.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(2)+g(2)=(  )
A.13B.-3C.-13D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)的定义域为(0,+∞),值域为R,对任意正数x,y,都有f(xy)=f(x)+f(y),当x>1时f(x)<0且f(3)=-1.
(1)求f(1)、f(9)、f($\frac{1}{9}$)的值.
(2)若不等式f(2-x)<2成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知一次函数f(x)满足f(1)=2,f(2)=3.
(1)求函数f(x)的解析式;
(2)判断函数g(x)=-1+lg[f(x)]2在区间[0,9]上的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设偶函数f(x)在(-∞,0)上是增函数,且f(-$\frac{1}{2}$)=0,则不等式$\frac{f(x)+f(-x)}{2x}<0$的解集为(  )
A.(-$\frac{1}{2}$,0)∪($\frac{1}{2}$,+∞)B.(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$)C.(-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线M的方程为x2+y2-4x+2my+2m2-2m+1=0.
(1)若曲线M表示圆,求实数m的取值范围;
(2)若曲线M与圆N:x2+y2=4关于直线l对称,求直线l的方程.

查看答案和解析>>

同步练习册答案