精英家教网 > 高中数学 > 题目详情

【题目】榆林市政府坚持保护环境和节约资源,坚持推进生态文明建设。若市财政局下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金(单位:百万元)的函数(单位:百万元),处理污染项目五年内带来的生态收益可表示为投放资金单位:(单位:百万元)的函数(单位:百万元)

(1)设分配给植绿护绿项目的资金为(百万元),则两个生态项目五年内带来的收益总和为y,写出y关于的函数解析式和定义域;

(2)试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?

【答案】(1);(2)y的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元.

【解析】

(1) 由题意可得处理污染项目投放资金为百万元,由此可得,再将相加可得.

(2)将变形后利用基本不等式可得最大值以及取得最大值的条件.

:1)由题意可得处理污染项目投放资金为百万元,

所以

所以.

2)由(1)得

当且仅当,即时等号成立,

此时.

y的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一片森林原面积为,计划从某年开始,每年砍伐一些树林,且每年砍伐面积与上一年剩余面积的百分比相等.并计划砍伐到原面积的一半时,所用时间是10.为保护生态环境,森林面积至少要保留原面积的.已知到今年为止,森林剩余面积为原面积的.

1)求每年砍伐面积与上一年剩余面积的百分比;

2)到今年为止,该森林已砍伐了多少年?

3)为保护生态环境,今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若存在实数)使得对于任意 都有成立,则称函数是带状函数;若存在最小值,则称为带宽.

1)判断函数 是不是带状函数?如果是,指出带宽(不用证明);如果不是,请说明理由;

2)求证:函数)是带状函数;

3)求证:函数是带状函数的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设

(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;

(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将平面上每个点都以红、蓝两色之一着色,证明:存在这样的两个相似三角形,它们的相似比为1995,并且每一个三角形的三个顶点同色。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x[-1,1],函数,aR的最小值为ha).

(1)求ha)的解析式;

(2)是否存在实数mn同时满足下列两个条件:①m>n>3;②当ha)的定义域为[nm]时,值域为[n2m2]?若存在,求出mn的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在区间上的值域.

(1)求的值;

(2)若不等式上恒成立,求实数的取值范围;

(3)若函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知真命题:“函数的图象关于点成中心对称图形”的等价条件为“函数是奇函数”.

1)将函数的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数图象对称中心的坐标;

2)已知命题:“函数的图象关于某直线成轴对称图象”的等价条件为“存在实数ab,使得函数是偶函数”.断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).

查看答案和解析>>

同步练习册答案