精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的三个顶点A(﹣1,0),B(1,0),C(3,2),其外接圆为⊙H.若直线l过点C,且被⊙H截得的弦长为2,求直线l的方程.

【答案】解:线段AB的垂直平分线方程为x=0,线段BC的垂直平分线方程为x+y﹣3=0,
所以外接圆圆心为H(0,3),半径为
故⊙H的方程为x2+(y﹣3)2=10.
设圆心H到直线l的距离为d,
因为直线l被⊙H截得的弦长为2,所以
当直线l垂直于x轴时,显然符合题意,即x=3为所求;
当直线l不垂直于x轴时,设直线方程为y﹣2=k(x﹣3),则 ,解得
综上,直线l的方程为x=3或4x﹣3y﹣6=0
【解析】先求出圆H的方程,再根据直线l过点C,且被⊙H截得的弦长为2,设出直线方程,利用勾股定理,即可求直线l的方程

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x﹣sinxcosx
(1)求f(x)的最小正周期;
(2)求函数f(x)的单调递增区间;
(3)求f(x)在区间 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,△是等边三角形,△是等腰直角三角形, ,平面 平面 平面,点的中点,连接.

(1) 求证: ∥平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年奥运会于8月5日在巴西里约热内卢举行,为了解某单位员工对奥运会的关注情况,对本单位部分员工进行了调查,得到平均每天看奥运会直播时间的茎叶图如下(单位:分钟),若平均每天看奥运会直播不低于70分钟的员工可以视为“关注奥运”,否则视为“不关注奥运”.

(1)试完成下面表格,并根据此数据判断是否有99.5%以上的把握认为是否“关注奥运会”与性别有关?

(2)若从参与调查且平均每天观看奥运会时间不低于110分钟的员工中抽取4人,用表示抽取的女员工数,求的分布列和期望值.

参考公式: 其中

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,g(x)=ax,(a∈R).
(1)若函数y=f(x)是偶函数,求出符合条件的实数a的值;
(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;
(3)若a>0,记F(x)=g(x)f(x),试求函数y=F(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F﹣BD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}前n项和为Sn , 且Sn+an=2. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=a1 , bn= ,n≥2 求证{ }为等比数列,并求数列{bn}的通项公式;
(Ⅲ)设cn= ,求数列{cn}的前n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。

证明:(1)直线EE//平面FCC

(2)求二面角B-FC-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在实数a,使函数 为奇函数,同时使函数 为偶函数,证明你的结论.

查看答案和解析>>

同步练习册答案