【题目】已知函数(其中,且为常数).
(1)当时,求函数的单调区间;
(2)若对于任意的,都有成立,求的取值范围;
(3)若方程在上有且只有一个实根,求的取值范围.
【答案】(Ⅰ)在(0,1),上单调递增,在(1,2)上单调递减(Ⅱ)(Ⅲ)
【解析】【试题分析】(1)将代入再求导,借助导函数值的符号确定函数的单调区间;(2)借助问题(1)的结论,对参数进行分类讨论,最终确定参数的取值范围;(3)依据题设条件将问题进行等价转化为的零点的个数问题,再运用导数知识及分类整合思想进行分析探求:
解:⑴函数的定义域为
由知
当时,
所以函数在(0,1)上单调递增,在(1,2)上单调递减,在上单调递增
(Ⅱ)由
当时,对于恒成立,在上单调递增
,此时命题成立;
当时,在上单调递减,在上单调递增, 当时,有.这与题设矛盾,不合. 故的取值范围是
(Ⅲ)依题意,设,原题即为若在上有且只有一个零点,求的取值范围.显然函数与的单调性是一致的.
当时,因为函数在上递增,由题意可知解得;
当时,因为,当时,总有,此时方程没有实根。
综上所述,当时,方程在上有且只有一个实根。
科目:高中数学 来源: 题型:
【题目】若二次函数f(x)=x2+bx+c满足f(2)=f(﹣2),且函数的f(x)的一个零点为1. (Ⅰ)求函数f(x)的解析式;
(Ⅱ)对任意的 ,4m2f(x)+f(x﹣1)≥4﹣4m2恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ (Ⅰ)判断函数的奇偶性,并加以证明;
(Ⅱ)用定义证明f(x)在(0,1)上是减函数;
(Ⅲ)函数f(x)在(﹣1,0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为(为参数, ),直线的极坐标方程为.
(1)写出曲线的普通方程和直线的直角坐标方程;
(2)为曲线上任意一点, 为直线任意一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:
甲是中国人,还会说英语.
乙是法国人,还会说日语.
丙是英国人,还会说法语.
丁是日本人,还会说汉语.
戊是法国人,还会说德语.
则这五位代表的座位顺序应为( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)若,讨论函数的单调性;
(2)是否存在实数,对任意, , 有恒成立,若存在,求出的范围,若不存在,请说明理由;
(3)记,如果是函数的两个零点,且, 是的导函数,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2x+1的定义域为[1,5],则函数f(2x﹣3)的定义域为( )
A.[1,5]
B.[3,11]
C.[3,7]
D.[2,4]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com