精英家教网 > 高中数学 > 题目详情

【题目】若a>b>1,0<c<1,则(
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc

【答案】C
【解析】解:∵a>b>1,0<c<1,

∴函数f(x)=xc在(0,+∞)上为增函数,故ac>bc,故A错误;

函数f(x)=xc1在(0,+∞)上为减函数,故ac1<bc1,故bac<abc,即abc>bac;故B错误;

logac<0,且logbc<0,logab<1,即 = <1,即logac>logbc.故D错误;

0<﹣logac<﹣logbc,故﹣blogac<﹣alogbc,即blogac>alogbc,即alogbc<blogac,故C正确;

故选:C

根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,平面的中点.

Ⅰ)求CEDB所成角的余弦值;

Ⅱ)设点在线段上,且直线与平面所成角的正弦值为,求线段的长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+1)+
(I)讨论函数f(x)在(0,+∞)上的单调性;
(II)设函数f(x)存在两个极值点,并记作x1 , x2 , 若f(x1)+f(x2)>4,求正数a的取值范围;
(III)求证:当a=1时,f(x)> (其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为 ,甲、乙两家公司对每题的回答都是相独立,互不影响的.
(1)求甲、乙两家公司共答对2道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(m,cos2x), =(sin2x,n),设函数f(x)= ,且y=f(x)的图象过点( )和点( ,﹣2).
(Ⅰ)求m,n的值;
(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象.若y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校决定在主干道旁边挖一个半椭圆形状的小湖,如图所示,AB=4,O为AB的中点,椭圆的焦点P在对称轴OD上,MN在椭圆上,MN平行ABODG,且GP的右侧,△MNP为灯光区,用于美化环境.

(1)若学校的另一条道路EF满足OE=3,tan∠OEF=2,为确保道路安全,要求椭圆上任意一点到道路EF的距离都不小于,求半椭圆形的小湖的最大面积:(椭圆()的面积为)

(2)若椭圆的离心率为,要求灯光区的周长不小于,求PG的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

≥5

概率

0.30

0.15

0.20

0.20

0.10

0.05

(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+ax2﹣ex,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;
(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.

查看答案和解析>>

同步练习册答案