精英家教网 > 高中数学 > 题目详情
(1)已知函数y=log3(x2-4mx+4m2+m+)的定义域为R,求实数m的取值范围;

(2)已知函数y=loga[x2+(k+1)x-k+](a>0,且a≠1)的值域为R,求实数k的取值范围.

思路分析:题(1)中,对任意实数x,x2-4mx+4m2+m+>0恒成立;题(2)中,x2+(k+1)x-k+取尽一切正实数.

解:(1)∵x2-4mx+4m2+m+>0对一切实数x恒成立,

∴Δ=16m2-4(4m2+m+)=-4(m+)<0.

>0.

又∵m2-m+1>0,∴m-1>0.∴m>1.

(2)∵y∈R,

∴x2+(k+1)x-k+可取尽一切正实数.

∴Δ=(k+1)2-4(-k+)≥0.

∴k2+6k≥0.∴k≥0或k≤-6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,且对于任意x1,x2∈R,存在正实数L,使得|f(x1)-f(x2)|≤L|x1-x2|都成立.
(1)若f(x)=
1+x2
,求L的取值范围;
(2)当0<L<1时,数列{an}满足an+1=f(an),n=1,2,….
①证明:
n
k=1
|ak-ak+1|≤
1
1-L
|a1-a2|

②令Ak=
a1+a2+…ak
k
(k=1,2,3,…)
,证明:
n
k=1
|Ak-Ak+1|≤
1
1-L
|a1-a2|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
旦(a>0)有如下的性质:在区间(0,
a
]上单调递减,在[
a
,+∞)上单调递增.
(1)如果函数f(x)=x+
2b
x
在(0,4]上单调递减,在[4,+∞)上单调递增,求常数b的值.
(2)设常数a∈[l,4],求函数y=x+
a
x
在x∈[l,2]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x3-8x+2,
(1)求函数在区间[2,3]上的值域;
(2)过原点作曲线的切线l:y=kx,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3x2-ax+2a的图象与x轴相交于不同的两点A、B.
(1)若A、B两点分别在直线x=1的两侧,求实数a的取值范围;
(2)若A、B两点都在直线l:x=1的右侧,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
x24
的图象为C1,过定点A(0,1)的直线l与C1交于B、C两点,过B、C所作C1的切线分别为l1、l2
(1)求证:l1⊥l2
(2)记线段BC中点为M,求M的轨迹方程.

查看答案和解析>>

同步练习册答案