分析 由题意,设出f(x)=kx+b,利用待定系数法求解即可.
解答 解:函数f(x)是一次函数,设f(x)=kx+b,(k≠0)
f(f(x))=kf(x)+b=k2x+kb+b.
∵f(f(x))=4x+1,即k2x+kb+b=4x+1,
由$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=2}\\{b=\frac{1}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{b=-2}\\{b=-1}\end{array}\right.$
∴f(x)=$2x+\frac{1}{3},或-2x-1$.
故答案为:$2x+\frac{1}{3},或-2x-1$.
点评 本题考查了函数解析式的求法,利用了待定系数法.属于基础题.
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 250π | B. | 200π | C. | 100π | D. | 50π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{32}{3}$π | B. | 16π | C. | 64π | D. | 544π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com