【题目】设是实数,,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意,在上为单调递增函数;
(3)若函数为奇函数,且不等式对任意恒成立,求实数的取值范围。
【答案】(1) m="1"
(2)根据函数单调性,结合定义设出变量,结合作差法得到,变形得到证明。
(3)
【解析】
试题(1)函数f(x)为奇函数,故可得f(x)+f(-x)=0,由此方程求m的值;(2)证明于任意m,f(x)在R上为单调函数,由定义法证明即可,设∈R,,研究的符号,根据单调性的定义判断出结果;(3)因为f(x)在R上为增函数且为奇函数,由此可以将不等式对任意x∈R恒成立,转化为即对任意x∈R恒成立,再通过换元进一步转化为二次不等式恒成立的问题即可解出此时的恒成立的条件
试题解析:(1)∵,且
∴(注:通过求也同样给分)∴
(2)证明:设,则
∵∴
∴即。 所以在R上为增函数。
(3)因为为奇函数且在R上为增函数,
由得:
∴即对任意恒成立。
令问题等价于对任意恒成立。
令,其对称轴
当即时,,符合题意。
当时,即时,对任意,恒成立,等价于
解得:
综上所述,当时,不等式对任意恒成立
科目:高中数学 来源: 题型:
【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出的频率分布直方图如下:
观察图形,回答下列问题:
(1)估计这次环保知识竞赛成绩的中位数;
(2)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合U=R,集合A={x|x2-(a-2)x-2a≥0},B={x|1≤x≤2}.
(1)当a=1时,求A∩B;
(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 圆,过点作圆的切线,切点分别为、,且(为原点).
()求点的轨迹方程.
()求四边形面积的最小值.
()设, ,在圆上存在点,使得,求的最大值和最小值(直接写出结果即可).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年的 | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
下一年 | 85% | 100% | 125% | 150% | 175% | 200% |
连续两年没有出险打7折,连续三年没有出险打6折 |
有评估机构从以往购买了车险的车辆中随机抽取1000辆调查,得到一年中出险次数的频数分布如下(并用相应频率估计车辆每年出险次数的概率):
一年中出险次数 | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
频数 | 500 | 380 | 100 | 15 | 4 | 1 |
(1)求某车在两年中出险次数不超过2次的概率;
(2)经验表明新车商业车险保费与购车价格有较强的线性相关关系,估计其回归直线方程为: =120x+1600.(其中x(万元)表示购车价格,y(元)表示商业车险保费).李先生2016 年1月购买一辆价值20万元的新车.根据以上信息,试估计该车辆在2017 年1月续保时应缴交的保费,并分析车险新政是否总体上减轻了车主负担.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在公差不为零的等差数列{an}中,a2=1,a2、a4、a8成等比数列.
(1)求数列{an}的通项公式an;
(2)设数列{an}的前n项和为Sn , 记bn= .Tn=b1+b2+…+bn , 求Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com