精英家教网 > 高中数学 > 题目详情

【题目】已知在数列中, .

(1)证明数列是等差数列,并求的通项公式;

(2)设数列的前项和为,证明: .

【答案】(1)(2)见解析

【解析】试题分析:(1)证明一个数列是否为等差数列的基本方法有两种:一是定义法:证明为常数;二是等差中项法,证明,若证明一个数列不是等差数列,则只需举出反例即可;(2)观测数列的特点形式,看使用什么方法求和.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源和目的.3)在做题时注意观察式子特点选择有关公式和性质进行化简,这样给做题带来方便,掌握常见求和方法,如分组转化求和,裂项法,错位相减.

试题解析:(1)由,得, (2分)

两式相减,得,即, (4分)

所以数列是等差数列. 5分)

,得,所以, (6分)

. 8分)

2)因为11分)

所以

) (14分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,讨论函数的单调性;

2)若函数上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率的关系,对某校高三某班学生进行了关注统计,得到如表数据:

1

2

3

4

20

30

50

60

(1)求关于的线性回归方程,并预测答题正确率是的强化训练次数(保留整数);

(2)若用)表示统计数据的“强化均值”(保留整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

,样本数据 ,…, 的标准差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某技术公司开发的某种产品中随机抽取200件,测量这些产品的一项质量指标值(记为),由测量结果得到如下频率分布直方图:

公司规定:当时,产品为正品;当时,产品为次品,公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元,记的分布列和数学期望;

由频率分布直方图可以认为,服从正态分布其中近似为样本平均数近似为样本方差(同一组中的数据用该区间的中点值作代表)

①利用该正态分布,求

②某客户从该公司购买了500件这种产品,记表示这500件产品中该项质量指标值位于区间的产品件数,利用①的结果,求.

附:

,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4,坐标系与参数方程

已知在平面直角坐标系xOy中,椭圆C的方程为,以O为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为

(1)求直线的直角坐标方程;

(2)设Mxy)为椭圆C上任意一点,求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4,坐标系与参数方程

已知在平面直角坐标系xOy中,椭圆C的方程为,以O为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为

(1)求直线的直角坐标方程;

(2)设Mxy)为椭圆C上任意一点,求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若,求函数在的切线方程;

(2)若函数上为单调递减函数,求实数的最小值;

(3)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若直线与曲线的交点的横坐标为,且,求整数所有可能的值.

查看答案和解析>>

同步练习册答案