精英家教网 > 高中数学 > 题目详情

【题目】设有关于x的一元二次方程

a是从0,1,2三个数中任取的一个数,b是从0,1,2,3四个数中任取的一个数,求上述方程有实根的概率;

a是从区间任取的一个数,b是从区间任取的一个数,求上述方程有实数的概率.

【答案】(1);(2)

【解析】

首先分析一元二次方程有实根的条件,得到ab

1)本题是一个古典概型,试验发生包含的基本事件可以通过列举得到结果数,满足条件的事件在前面列举的基础上得到结果数,求得概率.

2)本题是一个几何概型,试验的全部结果所构成的区域为{ab|0≤a≤20≤b≤3},满足条件的构成事件A的区域为{ab|0≤a≤20≤b≤3ab},根据概率等于面积之比,得到概率.

设事件A方程有实根

a0b0时,方程有实根的充要条件为ab

1)由题意知本题是一个古典概型,试验发生包含的基本事件共12个:

00)(01)(02)(03)(10)(11)(12)(13)(20)(21)(22)(23

其中第一个数表示a的取值,第二个数表示b的取值.

事件A中包含6个基本事件,

∴事件A发生的概率为P

2)由题意知本题是一个几何概型,

试验的全部结果所构成的区域为{ab|0≤a≤20≤b≤3}

满足条件的构成事件A的区域为{ab|0≤a≤20≤b≤3ab}

∴所求的概率是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知公差不为的等差数列的首项为1,前项和为,且数列是等差数列.

(1)求数列的通项公式;

(2)设,问:均为正整数,且能否成等比数列?若能,求出所有的的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号

码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。

(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;

(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】铁人中学高二学年某学生对其亲属30人饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)

(Ⅰ)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;

(Ⅱ)根据以上数据完成下列的列联表:

主食蔬菜

主食肉类

合计

50岁以下人数

50岁以上人数

合计人数

(Ⅲ)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①若“”为假命题,则均为假命题;②命题“若,则”的否命题为“若,则”; ③“,则”的否定是“,则”;④在中,“”是“”的充要条件.其中正确的命题的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)用函数单调性的定义在在证明:函数在区间上单调递减,在上单调递增;

(2)若对任意满足的实数,都有成立,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为是抛物线上的两个动点,线段的中点为,过作抛物线准线的垂线,垂足为,若,则的最大值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的离心率为,且经过点.

1)求椭圆的方程;

2)直线与椭圆相交于两点,若,求为坐标原点)面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线与椭圆交于的两点,且轴,若为椭圆上异于的动点且,则该椭圆的离心率为___.

查看答案和解析>>

同步练习册答案