精英家教网 > 高中数学 > 题目详情
8.曲线y=$\frac{1}{2}$x2+x在点(2,4)处的切线与坐标轴围成的三角形面积为$\frac{2}{3}$.

分析 求得函数的导数,可得切线的斜率,由点斜式方程可得切线的方程,再令x=0,y=0,可得与坐标轴的交点,由三角形的面积公式计算即可得到所求.

解答 解:y=$\frac{1}{2}$x2+x的导数为y′=x+1,
在点(2,4)处的切线斜率为3,
即有在点(2,4)处的切线方程为y-4=3(x-2),
令x=0,y=-2;令y=0,x=$\frac{2}{3}$.
则切线与坐标轴围成的三角形面积为$\frac{1}{2}$×2×$\frac{2}{3}$=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查导数的运用:求切线的方程,考查直线方程的求法和三角形的面积的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知对数函数y=logax在区间[3,6]上的最大值比最小值大2,则实数a=$\sqrt{2}$或$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x的方程2ax2-x+2a-1=0的两根均为正实数,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(-∞,0)∪($\frac{1}{2}$,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{2}$,$\frac{\sqrt{2}+1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知10α=2,10β=3,求100${\;}^{2α-\frac{1}{3}β}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f′(x)=k,求$\underset{lim}{x→∞}$[f(x+a)-f(x)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知两点P(1,3)Q(4,-1),则这两点间的距离为(  )
A.35B.25C.15D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知抛物线方程y2=2px(p>0),AB是过焦点F的一条弦,点A(x1,y1),B(x2,y2).求证:
(1)y1y2=-p2,x1x2=$\frac{{p}^{2}}{4}$;
(2)|AB|=x1+x2+p=$\frac{2p}{si{n}^{2}θ}$(θ为直线AB的倾斜角).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式tanx>a在x∈(-$\frac{π}{4},\frac{π}{2}$)上恒成立,则a的取值范围(  )
A.a>1B.a≤1C.a<-1D.a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sina-2cosa=0,求sin2a的值.

查看答案和解析>>

同步练习册答案