精英家教网 > 高中数学 > 题目详情
7.设Sn为数列{an}的前n项和,且a1=$\frac{3}{2}$,an+1=2Sn-2n,则a8=-601.

分析 由an+1=2Sn-2n得an=2Sn-1-2n-1,两式相减得出递推公式,依次计算各项可求出.

解答 解:∵an+1=2Sn-2n
∴当n=1时,a2=2a1-2=1.
∴当n≥2时,an=2Sn-1-2n-1,∴an+1-an=2an-2n-1,∴an+1=3an-2n-1
∴a3=3a2-2=1,a4=3a3-4=-1,a5=3a4-8=-11,a6=3a5-16=-49,a7=3a6-32=-179,a8=3a7-64=-601.
故答案为:-601.

点评 本题考查了数列的递推公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在等比数列{an)中,al=1,公比|q|≠1,若am=a2a5a10,则m=(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知锐角α,β满足$\frac{sinα}{cosβ}$+$\frac{sinβ}{cosα}$<2,设f(x)=logax(0<a<1),则下列判断正确的是(  )
A.f(sinα)>f(cosβ)B.f(cosα)>f(sinβ)C.f(sinα)<f(sinβ)D.f(cosα)<f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式$|\begin{array}{l}{{4}^{x}}&{5}\\{{2}^{x}}&{4}\end{array}|$>-1的解集是(-∞,-2)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若输出S的值是$\frac{1}{2}$,则a的值可以为(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.集合A={y|y=1-x-$\frac{4}{x}$},集合B={x|x2-(3+a)x+3a≤0},若A∩B=[5,6],求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设等比数列{zn},其中z1=1,z2=a+bi,z3=b+ai(a,b∈R,且a>0).
(1)求a,b的值;
(2)试求使z1+z2+…十zn=0最小的正整数n;
(3)对(2)中的正整数n,求z1•z2•…•z12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆x2+(y-5)2=25的圆心到直线3x+4y-5=0的距离等于(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设全集U={x|x≤5},集合A={x|-2<x<3},B={x|-3<x≤3},求∁UA,∁U(A∩B).

查看答案和解析>>

同步练习册答案