【题目】已知(),,其中为自然对数的底数.
(1)若恒成立,求实数的取值范围;
(2)若在(1)的条件下,当取最大值时,求证: .
【答案】(1); (2)见解析.
【解析】试题分析:(1)恒成立问题的两种处理方法:法一:分类讨论:求导利用函数的单调性求解即可;法二:分离参数. 恒成立在上恒成立,令求函数最值即可.
(2)要证 ,先证明: 时, ,只需要证明. 令求导利用单调性即可证得.
试题解析:
(1)解:法一:分类讨论.因为,
①当时, 所以,
故在上单调递增,
所以,所以
②当时,令,
若, ;若, ,
所以在上单减,在上单增;
所以,
解得,此时无解,
综上可得.
法二:分离参数. 恒成立在上恒成立.
令,则
所以在上单增,
故,所以
(2)证明:由题意可知, .
要证 (*)
先证明: 时, .
令.
当时, ,所以在上单减,
所以,所以.
所以要证明(*)式成立,只需要证明(**) ……(8分)
令,则,
,令
又在上单调递增,则在上, ,
在, .
所以, 在上单减,在上单增,
所以,
所以在上单调递增,所以.
所以(**)成立,也即是(*)式成立.故
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判断f(x)的单调性,并加以证明;
(2)解不等式 ;
(3)若f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在内的产品为合格品,否则为不合格品,统计结果如表:
(Ⅰ)求甲流水线样本合格的频率;
(Ⅱ)从乙流水线上重量值落在内的产品中任取2个产品,求这2件产品中恰好只有一件合格的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线在直角坐标系中的参数方程为为参数, 为倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,在极坐标系中,曲线的方程为.
(1)写出曲线的直角坐标方程;
(2)点,若直线与曲线交于两点,求使为定值的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.
(1)求的方程;
(2)过点的直线与相交于,两点,与相交于,两点,且与同向
(ⅰ)若,求直线的斜率
(ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com