精英家教网 > 高中数学 > 题目详情

【题目】已知),,其中为自然对数的底数.

(1)若恒成立,求实数的取值范围;

(2)若在(1)的条件下,当取最大值时,求证: .

【答案】(1); (2)见解析.

【解析】试题分析:(1恒成立问题的两种处理方法:法一:分类讨论:求导利用函数的单调性求解即可;法二:分离参数. 恒成立上恒成立,令求函数最值即可.

(2)要证 先证明: 时, ,只需要证明. 令求导利用单调性即可证得.

试题解析:

(1)解:法一:分类讨论.因为

①当时, 所以

上单调递增,

所以,所以

②当时,令

;若

所以上单减,在上单增;

所以

解得,此时无解,

综上可得

法二:分离参数. 恒成立上恒成立.

,则

所以上单增,

,所以

(2)证明:由题意可知,

要证 (*)

先证明: 时,

时, ,所以上单减,

所以,所以

所以要证明(*)式成立,只需要证明(**) ……(8分)

,则

,令

上单调递增,则在上,

所以, 上单减,在上单增,

所以

所以上单调递增,所以

所以(**)成立,也即是(*)式成立.故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若a满足x+lgx=4,b满足x+10x=4,函数f(x)= ,则关于x的方程f(x)=x的解的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判断f(x)的单调性,并加以证明;
(2)解不等式
(3)若f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在内的产品为合格品,否则为不合格品,统计结果如表:

(Ⅰ)求甲流水线样本合格的频率;

(Ⅱ)从乙流水线上重量值落在内的产品中任取2个产品,求这2件产品中恰好只有一件合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,已知
(1)求sinB的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别是角A,B,C的对边,且.

(1)求角的值;

(2)已知函数,将的图像向左平移个单位长度后得到函数的图像,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线在直角坐标系中的参数方程为为参数, 为倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,在极坐标系中,曲线的方程为.

(1)写出曲线的直角坐标方程;

(2)点,若直线与曲线交于两点,求使为定值的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点也是椭圆的一个焦点,的公共弦的长为.

(1)求的方程;

(2)过点的直线相交于两点,与相交于两点,且同向

)若,求直线的斜率

)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形

查看答案和解析>>

同步练习册答案