精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)定义在区间(0,+∞)上,且f(1)=0,导函数f′(x)=,函数g(x)=f(x)+f′(x).

(1)求函数g(x)的最小值;

(2)是否存在x0>0,使得不等式|g(x)-g(x0)|<对任意x>0恒成立?若存在,请求出x0的取值范围;若不存在,请说明理由.

【答案】(1)1;(2)满足条件的x0不存在,理由见解析。

【解析】

(I)根据题意求出f(x)的解析式,代入g(x)=f(x)+f′(x).求出g(x),根据g′(x)得出函数g(x)的单调区间和最小值;(2) 假设存在x0>0,使|g(x)﹣g(x0)|<成立,转化为求函数的值域,得矛盾.

(1)由题设,易知f(x)=ln xg(x)=ln x.

g′(x)=.令g′(x)=0,得x=1.

x∈(0,1)时,g′(x)<0,故区间(0,1)是函数g(x)的单调递减区间;

x∈(1,+∞)时,g′(x)>0,故区间(1,+∞)是函数g(x)的单调递增区间.

∴函数g(x)的最小值为g(1)=1.

(2)满足条件的x0不存在.理由如下:

假设存在x0>0,使得不等式|g(x)-g(x0)|<对任意x>0恒成立.

由(1)知函数g(x)的最小值为g(1)=1.

∴当x≥1时,函数g(x)的值域为[1,+∞),

从而可取一个x1>1,使g(x1)≥g(x0)+1,

g(x1)-g(x0)≥1 故|g(x1)-g(x0)|≥1>,与假设矛盾.

∴不存在x0>0,使得不等式|g(x)-g(x0)|<对任意x>0恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校某文具商店经营某种文具,商店每销售一件该文具可获利3元,若供大于求则削价处理,每处理一件文具亏损1元;若供不应求,则可以从外部调剂供应,此时每件文具仅获利2元.为了了解市场需求的情况,经销商统计了去年一年(52周)的销售情况.

销售量(件)

10

11

12

13

14

15

16

周数

2

4

8

13

13

8

4

以去年每周的销售量的频率为今年每周市场需求量的概率.
(1)要使进货量不超过市场需求量的概率大于0.5,问进货量的最大值是多少?
(2)如果今年的周进货量为14,写出周利润Y的分布列;
(3)如果以周利润的期望值为考虑问题的依据,今年的周进货量定为多少合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,运行相应的程序,则输出的S的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的偶函数f(x)满足x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(x+1)恰有三个零点,则a的取值范围是(
A.(0,
B.(0,
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义为n个正数的“均倒数”已知正项数列{an}的前n项的“均倒数”为

(1)求数列{an}的通项公式

(2)设数列的前n项和为,若4<对一切恒成立试求实数m的取值范围

(3)令,问:是否存在正整数k使得对一切恒成立,如存在求出k值,否则说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是首项为2,公比为的等比数列,且前项和为.

(1)用表示

(2)是否存在自然数,使得成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下面材料,完成数学问题.

我校高二文科班的同学到武昌农民运动讲习所研学的途中路过武汉长江大桥边的武昌长江大堤,同学们在大堤上看到与武昌隔江相对的汉阳龟山上的电视塔和汉阳江边的晴川饭店在朝阳的映照下显得非常美丽,纷纷拿出手机拍照。这时带队的老师问大家,我要站在武昌大堤的哪一点才能够同时拍下电视塔和晴川饭店最清晰的图像?听到这个问题后,同学们议论纷纷。讨论一会后,一个同学对大家说:“把电视塔看成点A,饭店看成点B,武昌大堤看成直线l,C是直线l上的动点,拍照最佳点就是直线上使∠ACB最大的点.使∠ACB最大的点的求法用初中数学的一个定理:过点A,B作与直线l相切的圆,半径较小的圆和直线l的切点就是直线l上使∠ACB最大的点。”老师和同学们听了拍手称对。回到学校后,一位同学利用百度地图测距功能测得点A到直线l距离是2km,点B到直线l距离是1.5km,A,B两点间的距离是1km.该同学以直线lx轴,过A点和直线l垂直的直线为y轴建立了如图所示的坐标系,点A的坐标为(0, 2),点B在第一象限.根据以上材料,请在所给的坐标系中,在x轴上求使∠ACB最大的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,过的直线交于两点,点的坐标为.

(1)当轴垂直时,求直线的方程;

(2)设为坐标原点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆外一点,若圆上存在一点,使得,则正数的取值范围是____________

查看答案和解析>>

同步练习册答案